-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_heatmap.py
407 lines (331 loc) · 15.3 KB
/
demo_heatmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import csv
import os
import shutil
from PIL import Image
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision
import cv2
import numpy as np
import time
import json
from tqdm import tqdm
from scipy import signal
from cal_gait import *
import _init_paths
import models
from config import cfg
from config import update_config
from core.inference import get_final_preds, get_final_preds_heatmap
from utils.transforms import get_affine_transform
from utils.video_preprocess import video_preprocessing
COCO_KEYPOINT_INDEXES = {
0: 'nose',
1: 'left_eye',
2: 'right_eye',
3: 'left_ear',
4: 'right_ear',
5: 'left_shoulder',
6: 'right_shoulder',
7: 'left_elbow',
8: 'right_elbow',
9: 'left_wrist',
10: 'right_wrist',
11: 'left_hip',
12: 'right_hip',
13: 'left_knee',
14: 'right_knee',
15: 'left_ankle',
16: 'right_ankle',
17: 'pelvis'
}
COCO_INSTANCE_CATEGORY_NAMES = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]
SKELETON = [
[1, 3], [1, 0], [2, 4], [2, 0], [0, 5], [0, 6], [5, 7], [7, 9], [6, 8], [8, 10], [5, 11], [6, 12], [11, 12], [11, 13], [13, 15], [12, 14], [14, 16]
]
CocoColors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
NUM_KPTS = 17
# cuda
CTX = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
def draw_pose(keypoints, img):
"""draw the keypoints and the skeletons.
:params keypoints: the shape should be equal to [17,2]
:params img:
"""
assert keypoints.shape == (NUM_KPTS, 2)
for i in range(len(SKELETON)):
kpt_a, kpt_b = SKELETON[i][0], SKELETON[i][1]
if kpt_a == 17:
x_a, y_a = (keypoints[kpt_a - 5][0] + keypoints[kpt_a - 6][0]) / 2, (keypoints[kpt_a - 5][1] + keypoints[kpt_a - 6][1]) / 2
x_b, y_b = keypoints[kpt_b][0], keypoints[kpt_b][1]
elif kpt_b == 17:
x_a, y_a = keypoints[kpt_a][0], keypoints[kpt_a][1]
x_b, y_b = (keypoints[kpt_b - 5][0] + keypoints[kpt_b - 6][0]) / 2, (keypoints[kpt_b - 5][1] + keypoints[kpt_b - 6][1]) / 2
else:
x_a, y_a = keypoints[kpt_a][0], keypoints[kpt_a][1]
x_b, y_b = keypoints[kpt_b][0], keypoints[kpt_b][1]
cv2.circle(img, (int(x_a), int(y_a)), 6, CocoColors[i], -1)
cv2.circle(img, (int(x_b), int(y_b)), 6, CocoColors[i], -1)
cv2.line(img, (int(x_a), int(y_a)), (int(x_b), int(y_b)), CocoColors[i], 2)
def draw_bbox(box, img):
"""draw the detected bounding box on the image.
:param img:
"""
cv2.rectangle(img, box[0], box[1], color=(0, 255, 0), thickness=3)
def get_person_detection_boxes(model, img, threshold=0.5):
pred = model(img)
pred_classes = [COCO_INSTANCE_CATEGORY_NAMES[i]
for i in list(pred[0]['labels'].cpu().numpy())] # Get the Prediction Score
pred_boxes = [[(i[0], i[1]), (i[2], i[3])]
for i in list(pred[0]['boxes'].detach().cpu().numpy())] # Bounding boxes
pred_score = list(pred[0]['scores'].detach().cpu().numpy())
if not pred_score or max(pred_score) < threshold:
return []
# Get list of index with score greater than threshold
pred_t = [pred_score.index(x) for x in pred_score if x > threshold][-1]
pred_boxes = pred_boxes[:pred_t + 1]
pred_classes = pred_classes[:pred_t + 1]
person_boxes = []
for idx, box in enumerate(pred_boxes):
if pred_classes[idx] == 'person':
person_boxes.append(box)
return person_boxes
def get_pose_estimation_prediction(pose_model, image, center, scale):
rotation = 0
# pose estimation transformation
trans = get_affine_transform(center, scale, rotation, cfg.MODEL.IMAGE_SIZE)
model_input = cv2.warpAffine(image, trans, (int(cfg.MODEL.IMAGE_SIZE[0]), int(cfg.MODEL.IMAGE_SIZE[1])), flags=cv2.INTER_LINEAR)
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
# pose estimation inference
model_input = transform(model_input).unsqueeze(0)
# switch to evaluate mode
pose_model.eval()
with torch.no_grad():
# compute output heatmap
output = pose_model(model_input)
preds, _ = get_final_preds(cfg, output.clone().cpu().numpy(), np.asarray([center]), np.asarray([scale]))
return preds
def get_pose_estimation_prediction_heatmap(pose_model, image, center, scale, original_img, img_count):
rotation = 0
# pose estimation transformation
trans = get_affine_transform(center, scale, rotation, cfg.MODEL.IMAGE_SIZE)
model_input = cv2.warpAffine(image, trans, (int(cfg.MODEL.IMAGE_SIZE[0]), int(cfg.MODEL.IMAGE_SIZE[1])), flags=cv2.INTER_LINEAR)
model_input_image = model_input
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
# pose estimation inference
model_input = transform(model_input).unsqueeze(0)
# switch to evaluate mode
pose_model.eval()
with torch.no_grad():
# compute output heatmap
output = pose_model(model_input)
preds, _ = get_final_preds_heatmap(cfg, output.clone().cpu().numpy(), np.asarray([center]), np.asarray([scale]), model_input_image, img_count)
return preds
def get_pose_estimation_prediction_with_confidence(pose_model, image, center, scale):
rotation = 0
# pose estimation transformation
trans = get_affine_transform(center, scale, rotation, cfg.MODEL.IMAGE_SIZE)
model_input = cv2.warpAffine(image, trans, (int(cfg.MODEL.IMAGE_SIZE[0]), int(cfg.MODEL.IMAGE_SIZE[1])), flags=cv2.INTER_LINEAR)
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
# pose estimation inference
model_input = transform(model_input).unsqueeze(0)
# switch to evaluate mode
pose_model.eval()
with torch.no_grad():
# compute output heatmap
output = pose_model(model_input)
preds, confidence = get_final_preds(
cfg,
output.clone().cpu().numpy(),
np.asarray([center]),
np.asarray([scale]))
return preds, confidence
def box_to_center_scale(box, model_image_width, model_image_height):
"""convert a box to center,scale information required for pose transformation
Parameters
----------
box : list of tuple
list of length 2 with two tuples of floats representing
bottom left and top right corner of a box
model_image_width : int
model_image_height : int
Returns
-------
(numpy array, numpy array)
Two numpy arrays, coordinates for the center of the box and the scale of the box
"""
center = np.zeros(2, dtype=np.float32)
bottom_left_corner = box[0]
top_right_corner = box[1]
box_width = top_right_corner[0] - bottom_left_corner[0]
box_height = top_right_corner[1] - bottom_left_corner[1]
bottom_left_x = bottom_left_corner[0]
bottom_left_y = bottom_left_corner[1]
center[0] = bottom_left_x + box_width * 0.5
center[1] = bottom_left_y + box_height * 0.5
aspect_ratio = model_image_width * 1.0 / model_image_height
pixel_std = 200
if box_width > aspect_ratio * box_height:
box_height = box_width * 1.0 / aspect_ratio
elif box_width < aspect_ratio * box_height:
box_width = box_height * aspect_ratio
scale = np.array([box_width * 1.0 / pixel_std, box_height * 1.0 / pixel_std], dtype=np.float32)
if center[0] != -1:
scale = scale * 1.25
return center, scale
def parse_args():
parser = argparse.ArgumentParser(description='Train keypoints network')
# general
parser.add_argument('--cfg', type=str, default='demo/inference-config.yaml')
parser.add_argument('--video', type=str)
parser.add_argument('--webcam', action='store_true')
parser.add_argument('--image', type=str)
parser.add_argument('--write', action='store_true')
parser.add_argument('--showFps', action='store_true')
parser.add_argument('opts',
help='Modify config options using the command-line',
default=None,
nargs=argparse.REMAINDER)
args = parser.parse_args()
# args expected by supporting codebase
args.modelDir = ''
args.logDir = ''
args.dataDir = ''
args.prevModelDir = ''
return args
def main():
# cudnn related setting
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
args = parse_args()
update_config(cfg, args)
box_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
box_model.to(CTX)
box_model.eval()
pose_model = eval('models.' + cfg.MODEL.NAME + '.get_pose_net')(cfg, is_train=False)
if cfg.TEST.MODEL_FILE:
print('=> loading model from {}'.format(cfg.TEST.MODEL_FILE))
pose_model.load_state_dict(torch.load("../" + cfg.TEST.MODEL_FILE), strict=False)
else:
print('expected model defined in config at TEST.MODEL_FILE')
pose_model = torch.nn.DataParallel(pose_model, device_ids=cfg.GPUS)
"""*******************************************************************Hook place****************************************************************************"""
"""*******************************************************************Hook place****************************************************************************"""
pose_model.to(CTX)
pose_model.eval()
# Loading an video or an image or webcam
if args.webcam:
vidcap = cv2.VideoCapture(0)
elif args.video:
video_pre_path = video_preprocessing(args.video)
video_name = args.video.split('/')[-1]
vidcap = cv2.VideoCapture(video_pre_path)
elif args.image:
image_bgr = cv2.imread(args.image)
else:
print('please use --video or --webcam or --image to define the input.')
return
if args.webcam or args.video:
if args.write:
save_path = '../output/' + 'origin_' + video_name
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(save_path, fourcc, 30.0, (int(vidcap.get(3)), int(vidcap.get(4))))
count = vidcap.get(cv2.CAP_PROP_FRAME_COUNT)
fps = vidcap.get(cv2.CAP_PROP_FPS)
print("视频帧率为: {}".format(fps))
for i in tqdm(range(int(count)), desc="Processing: "):
ret, image_bgr = vidcap.read()
if ret:
last_time = time.time()
image = image_bgr[:, :, [2, 1, 0]]
input = []
img = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
img_tensor = torch.from_numpy(img / 255.).permute(2, 0, 1).float().to(CTX)
input.append(img_tensor)
# object detection box
pred_boxes = get_person_detection_boxes(box_model, input, threshold=0.9)
# pose estimation
if len(pred_boxes) >= 1:
for box in pred_boxes:
center, scale = box_to_center_scale(box, cfg.MODEL.IMAGE_SIZE[0], cfg.MODEL.IMAGE_SIZE[1])
image_pose = image.copy() if cfg.DATASET.COLOR_RGB else image_bgr.copy()
# pose_preds = get_pose_estimation_prediction(pose_model, image_pose, center, scale)
pose_preds = get_pose_estimation_prediction_heatmap(pose_model, image_pose, center, scale, img, i)
if len(pose_preds) >= 1:
for kpt in pose_preds:
# kpt shape is (17, 2)
draw_pose(kpt, image_bgr) # draw the poses
if args.showFps:
fps = 1 / (time.time() - last_time)
cv2.putText(image_bgr, 'fps: ' + "%.2f" % fps, (25, 40), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 255, 0), 2)
if args.write:
out.write(image_bgr)
# cv2.imshow('demo', image_bgr)
if cv2.waitKey(1) & 0XFF == ord('q'):
break
else:
print('cannot load the video.')
break
cv2.destroyAllWindows()
vidcap.release()
if args.write:
print('video has been saved as {}'.format(save_path))
out.release()
else:
# estimate on the image
last_time = time.time()
image = image_bgr[:, :, [2, 1, 0]]
input = []
img = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
img_tensor = torch.from_numpy(img / 255.).permute(2, 0, 1).float().to(CTX)
input.append(img_tensor)
# object detection box
pred_boxes = get_person_detection_boxes(box_model, input, threshold=0.9)
# pose estimation
if len(pred_boxes) >= 1:
for box in pred_boxes:
center, scale = box_to_center_scale(box, cfg.MODEL.IMAGE_SIZE[0], cfg.MODEL.IMAGE_SIZE[1])
image_pose = image.copy() if cfg.DATASET.COLOR_RGB else image_bgr.copy()
pose_preds, pose_confidence = get_pose_estimation_prediction_with_confidence(pose_model, image_pose, center, scale)
# pose_preds -> (1, 17, 2)
# pose_confidence -> (1, 17, 1)
if len(pose_preds) >= 1:
for kpt in pose_preds:
draw_pose(kpt, image_bgr) # draw the poses
if args.showFps:
fps = 1 / (time.time() - last_time)
img = cv2.putText(image_bgr, 'fps: ' + "%.2f" % fps, (25, 40), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 255, 0), 2)
if args.write:
save_path = './output/output.jpg'
cv2.imwrite(save_path, image_bgr)
print('the result image has been saved as {}'.format(save_path))
cv2.imshow('demo', image_bgr)
if cv2.waitKey(0) & 0XFF == ord('q'):
cv2.destroyAllWindows()
if __name__ == '__main__':
main()