forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_compression.py
257 lines (222 loc) · 8.26 KB
/
test_compression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import io
import os
from pathlib import Path
import subprocess
import sys
import textwrap
import time
import pytest
import pandas as pd
import pandas._testing as tm
import pandas.io.common as icom
@pytest.mark.parametrize(
"obj",
[
pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
),
pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
],
)
@pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"])
def test_compression_size(obj, method, compression_only):
with tm.ensure_clean() as path:
getattr(obj, method)(path, compression=compression_only)
compressed_size = os.path.getsize(path)
getattr(obj, method)(path, compression=None)
uncompressed_size = os.path.getsize(path)
assert uncompressed_size > compressed_size
@pytest.mark.parametrize(
"obj",
[
pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
),
pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
],
)
@pytest.mark.parametrize("method", ["to_csv", "to_json"])
def test_compression_size_fh(obj, method, compression_only):
with tm.ensure_clean() as path:
with icom.get_handle(path, "w", compression=compression_only) as handles:
getattr(obj, method)(handles.handle)
assert not handles.handle.closed
compressed_size = os.path.getsize(path)
with tm.ensure_clean() as path:
with icom.get_handle(path, "w", compression=None) as handles:
getattr(obj, method)(handles.handle)
assert not handles.handle.closed
uncompressed_size = os.path.getsize(path)
assert uncompressed_size > compressed_size
@pytest.mark.parametrize(
"write_method, write_kwargs, read_method",
[
("to_csv", {"index": False}, pd.read_csv),
("to_json", {}, pd.read_json),
("to_pickle", {}, pd.read_pickle),
],
)
def test_dataframe_compression_defaults_to_infer(
write_method, write_kwargs, read_method, compression_only
):
# GH22004
input = pd.DataFrame([[1.0, 0, -4], [3.4, 5, 2]], columns=["X", "Y", "Z"])
extension = icom._compression_to_extension[compression_only]
with tm.ensure_clean("compressed" + extension) as path:
getattr(input, write_method)(path, **write_kwargs)
output = read_method(path, compression=compression_only)
tm.assert_frame_equal(output, input)
@pytest.mark.parametrize(
"write_method,write_kwargs,read_method,read_kwargs",
[
("to_csv", {"index": False, "header": True}, pd.read_csv, {"squeeze": True}),
("to_json", {}, pd.read_json, {"typ": "series"}),
("to_pickle", {}, pd.read_pickle, {}),
],
)
def test_series_compression_defaults_to_infer(
write_method, write_kwargs, read_method, read_kwargs, compression_only
):
# GH22004
input = pd.Series([0, 5, -2, 10], name="X")
extension = icom._compression_to_extension[compression_only]
with tm.ensure_clean("compressed" + extension) as path:
getattr(input, write_method)(path, **write_kwargs)
if "squeeze" in read_kwargs:
kwargs = read_kwargs.copy()
del kwargs["squeeze"]
output = read_method(path, compression=compression_only, **kwargs).squeeze(
"columns"
)
else:
output = read_method(path, compression=compression_only, **read_kwargs)
tm.assert_series_equal(output, input, check_names=False)
def test_compression_warning(compression_only):
# Assert that passing a file object to to_csv while explicitly specifying a
# compression protocol triggers a RuntimeWarning, as per GH21227.
df = pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
)
with tm.ensure_clean() as path:
with icom.get_handle(path, "w", compression=compression_only) as handles:
with tm.assert_produces_warning(RuntimeWarning):
df.to_csv(handles.handle, compression=compression_only)
def test_compression_binary(compression_only):
"""
Binary file handles support compression.
GH22555
"""
df = tm.makeDataFrame()
# with a file
with tm.ensure_clean() as path:
with open(path, mode="wb") as file:
df.to_csv(file, mode="wb", compression=compression_only)
file.seek(0) # file shouldn't be closed
tm.assert_frame_equal(
df, pd.read_csv(path, index_col=0, compression=compression_only)
)
# with BytesIO
file = io.BytesIO()
df.to_csv(file, mode="wb", compression=compression_only)
file.seek(0) # file shouldn't be closed
tm.assert_frame_equal(
df, pd.read_csv(file, index_col=0, compression=compression_only)
)
def test_gzip_reproducibility_file_name():
"""
Gzip should create reproducible archives with mtime.
Note: Archives created with different filenames will still be different!
GH 28103
"""
df = tm.makeDataFrame()
compression_options = {"method": "gzip", "mtime": 1}
# test for filename
with tm.ensure_clean() as path:
path = Path(path)
df.to_csv(path, compression=compression_options)
time.sleep(2)
output = path.read_bytes()
df.to_csv(path, compression=compression_options)
assert output == path.read_bytes()
def test_gzip_reproducibility_file_object():
"""
Gzip should create reproducible archives with mtime.
GH 28103
"""
df = tm.makeDataFrame()
compression_options = {"method": "gzip", "mtime": 1}
# test for file object
buffer = io.BytesIO()
df.to_csv(buffer, compression=compression_options, mode="wb")
output = buffer.getvalue()
time.sleep(2)
buffer = io.BytesIO()
df.to_csv(buffer, compression=compression_options, mode="wb")
assert output == buffer.getvalue()
def test_with_missing_lzma():
"""Tests if import pandas works when lzma is not present."""
# https://github.com/pandas-dev/pandas/issues/27575
code = textwrap.dedent(
"""\
import sys
sys.modules['lzma'] = None
import pandas
"""
)
subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.PIPE)
def test_with_missing_lzma_runtime():
"""Tests if RuntimeError is hit when calling lzma without
having the module available.
"""
code = textwrap.dedent(
"""
import sys
import pytest
sys.modules['lzma'] = None
import pandas as pd
df = pd.DataFrame()
with pytest.raises(RuntimeError, match='lzma module'):
df.to_csv('foo.csv', compression='xz')
"""
)
subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.PIPE)
@pytest.mark.parametrize(
"obj",
[
pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
),
pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
],
)
@pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"])
def test_gzip_compression_level(obj, method):
# GH33196
with tm.ensure_clean() as path:
getattr(obj, method)(path, compression="gzip")
compressed_size_default = os.path.getsize(path)
getattr(obj, method)(path, compression={"method": "gzip", "compresslevel": 1})
compressed_size_fast = os.path.getsize(path)
assert compressed_size_default < compressed_size_fast
@pytest.mark.parametrize(
"obj",
[
pd.DataFrame(
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
columns=["X", "Y", "Z"],
),
pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"),
],
)
@pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"])
def test_bzip_compression_level(obj, method):
"""GH33196 bzip needs file size > 100k to show a size difference between
compression levels, so here we just check if the call works when
compression is passed as a dict.
"""
with tm.ensure_clean() as path:
getattr(obj, method)(path, compression={"method": "bz2", "compresslevel": 1})