Skip to content

Commit 6876fe5

Browse files
authored
[mlir][linalg] Add a test to demonstrate peeling + vectorisation (#77590)
Following on from #75842, we can demonstrate that loop peeling combined with masked vectorisation and existing canonicalization for vector.mask operations leads to the following loop structure: ``` // M dimension scf.for 1:M // N dimension (contains vector ops _without_ masking) scf.for 1:UB // K dimension scf.for 1:K vector.add // N dimension (contains vector ops _with_ masking) scf.for UB:N // K dimension scf.for 1:K vector.mask { vector.add } ``` This is particularly beneficial for scalable vectors which normally require masking. This example demonstrates how to avoid them.
1 parent 14e2910 commit 6876fe5

File tree

1 file changed

+86
-0
lines changed

1 file changed

+86
-0
lines changed
Lines changed: 86 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,86 @@
1+
// RUN: mlir-opt %s --transform-interpreter --split-input-file -canonicalize | FileCheck %s
2+
3+
// Demonstrates what happens when peeling the middle loop (2nd parallel
4+
// dimension) followed by vectorization in the presence of _scalable_ vectors
5+
// (these are introduced through scalable tiling). The main goal is to verify
6+
// that canonicalizations fold away the masks in the main loop.
7+
8+
func.func @matmul(%A: tensor<1024x512xf32>,
9+
%B: tensor<512x2000xf32>,
10+
%C: tensor<1024x2000xf32>) -> tensor<1024x2000xf32> {
11+
12+
// CHECK: #[[MAP:.*]] = affine_map<()[s0] -> (-(2000 mod s0) + 2000)>
13+
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
14+
// CHECK-DAG: %[[C2000:.*]] = arith.constant 2000 : index
15+
// CHECK-DAG: %[[C8:.*]] = arith.constant 8 : index
16+
// CHECK-DAG: %[[C1024:.*]] = arith.constant 1024 : index
17+
// CHECK-DAG: %[[C512:.*]] = arith.constant 512 : index
18+
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
19+
// CHECK-DAG: %[[C16:.*]] = arith.constant 16 : index
20+
// CHECK: %[[VSCALE:.*]] = vector.vscale
21+
// CHECK: %[[STEP:.*]] = arith.muli %[[VSCALE]], %[[C16]] : index
22+
// CHECK: %2 = scf.for {{.*}} %[[C0]] to %[[C1024]] step %[[C8]] iter_args(%arg4 = %arg2) -> (tensor<1024x2000xf32>) {
23+
24+
// Main loop after vectorisation (without masking)
25+
26+
// CHECK: %[[UB_MAIN:.*]] = affine.apply #[[MAP]]()[%[[STEP]]]
27+
// CHECK: scf.for {{.*}} %[[C0]] to %[[UB_MAIN]] step %[[STEP]] {{.*}} -> (tensor<1024x2000xf32>) {
28+
// CHECK: scf.for %arg7 = %[[C0]] to %[[C512]] step %[[C1]] {{.*}} -> (tensor<1024x2000xf32>) {
29+
// CHECK-NOT: vector.mask
30+
// CHECK: arith.mulf {{.*}} : vector<8x[16]x1xf32>
31+
// CHECK-NEXT: vector.shape_cast {{.*}} : vector<8x[16]x1xf32> to vector<8x[16]xf32>
32+
// CHECK-NEXT: arith.addf {{.*}} : vector<8x[16]xf32>
33+
// CHECK-NOT: vector.mask
34+
// CHECK: scf.yield {{.*}} : tensor<1024x2000xf32>
35+
// CHECK-NEXT: }
36+
// CHECK-NEXT: scf.yield {{.*}} : tensor<1024x2000xf32>
37+
// CHECK-NEXT: }
38+
39+
// Remainder loop after vectorisation (with masking)
40+
41+
// CHECK: scf.for {{.*}} %[[UB_MAIN]] to %[[C2000]] step %[[STEP]] {{.*}} -> (tensor<1024x2000xf32>) {
42+
// CHECK: scf.for {{.*}} %[[C0]] to %[[C512]] step %[[C1]] {{.*}} -> (tensor<1024x2000xf32>) {
43+
// CHECK: %[[MASK_1:.*]] = vector.create_mask {{.*}} : vector<1x[16]xi1>
44+
// CHECK: %[[RHS:.*]] = vector.mask %[[MASK_1]] { vector.transfer_read {{.*}} } : vector<1x[16]xi1> -> vector<8x[16]x1xf32>
45+
// CHECK: %[[MASK_2:.*]] = vector.create_mask {{.*}} : vector<8x[16]xi1>
46+
// CHECK: %[[LHS:.*]] = vector.mask %[[MASK_2]] { vector.transfer_read {{.*}} } : vector<8x[16]xi1> -> vector<8x[16]xf32>
47+
// CHECK: %[[MUL:.*]] = arith.mulf %{{.*}}, %[[RHS]] : vector<8x[16]x1xf32>
48+
// CHECK: %[[MASK_3:.*]] = vector.create_mask {{.*}} : vector<8x[16]xi1>
49+
// CHECK: vector.shape_cast %[[MUL]] : vector<8x[16]x1xf32> to vector<8x[16]xf32>
50+
// CHECK: arith.addf %[[LHS]], %{{.*}} : vector<8x[16]xf32>
51+
// CHECK: arith.select %[[MASK_3]], {{.*}} : vector<8x[16]xi1>, vector<8x[16]xf32>
52+
// CHECK: vector.mask %[[MASK_2]] { vector.transfer_write {{.*}} } : vector<8x[16]xi1> -> tensor<8x?xf32>
53+
// CHECK: scf.yield %inserted_slice : tensor<1024x2000xf32>
54+
// CHECK: }
55+
// CHECK: scf.yield %7 : tensor<1024x2000xf32>
56+
// CHECK: }
57+
// CHECK: scf.yield %5 : tensor<1024x2000xf32>
58+
// CHECK-NEXT: }
59+
60+
%res = linalg.matmul ins(%A, %B: tensor<1024x512xf32>, tensor<512x2000xf32>)
61+
outs(%C: tensor<1024x2000xf32>) -> tensor<1024x2000xf32>
62+
return %res : tensor<1024x2000xf32>
63+
}
64+
65+
module attributes {transform.with_named_sequence} {
66+
transform.named_sequence @__transform_main(%root: !transform.any_op {transform.readonly}) {
67+
%matmul = transform.structured.match ops{["linalg.matmul"]} in %root : (!transform.any_op) -> !transform.any_op
68+
// 1. Scalable tiling
69+
%_, %loop_1, %loop_2, %loop_3 =
70+
transform.structured.tile_using_for %matmul [8, [16], 1] : (!transform.any_op)
71+
-> (!transform.any_op, !transform.op<"scf.for">, !transform.op<"scf.for">,!transform.op<"scf.for">)
72+
73+
// 2. Loop peeling (only the middle dimension)
74+
%main_loop, %remainder_loop = transform.loop.peel %loop_2 : (!transform.op<"scf.for">) -> (!transform.op<"scf.for">, !transform.op<"scf.for">)
75+
76+
// 3. Vectorize the main loop
77+
%matmul_main = transform.structured.match ops{["linalg.matmul"]} in %main_loop : (!transform.op<"scf.for">) -> !transform.any_op
78+
transform.structured.vectorize %matmul_main vector_sizes [8, [16], 1] : !transform.any_op
79+
80+
// 4. Vectorize the remainder loop
81+
%matmul_remainder = transform.structured.match ops{["linalg.matmul"]} in %remainder_loop : (!transform.op<"scf.for">) -> !transform.any_op
82+
transform.structured.vectorize %matmul_remainder vector_sizes [8, [16], 1] : !transform.any_op
83+
84+
transform.yield
85+
}
86+
}

0 commit comments

Comments
 (0)