|
7 | 7 | // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
|
8 | 8 | // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor<?x?xf32>
|
9 | 9 | // CHECK: %[[VAL_2:.*]] = torch.constant.none
|
10 |
| -// CHECK: %[[VAL_3:.*]] = "mhlo.copy"(%[[VAL_1]]) : (tensor<?x?xf32>) -> tensor<?x?xf32> |
| 10 | +// CHECK: %[[VAL_3:.*]] = mhlo.copy %[[VAL_1]] : (tensor<?x?xf32>) -> tensor<?x?xf32> |
11 | 11 | // CHECK: %[[VAL_4:.*]] = torch_c.from_builtin_tensor %[[VAL_3]] : tensor<?x?xf32> -> !torch.vtensor<[?,?],f32>
|
12 | 12 | // CHECK: return %[[VAL_4]] : !torch.vtensor<[?,?],f32>
|
13 | 13 | func.func @torch.aten.clone$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
|
@@ -47,7 +47,7 @@ func.func @torch.vtensor.literal$signed() -> !torch.vtensor<[2],si64> {
|
47 | 47 | // CHECK: %[[T0:.*]] = torch_c.to_i64 %[[INT1]]
|
48 | 48 | // CHECK: %[[T1:.*]] = tensor.from_elements %[[T0]] : tensor<1xi64>
|
49 | 49 | // CHECK: %[[T2:.*]] = mhlo.convert %[[T1]] : tensor<1xi64>
|
50 |
| -// CHECK: %[[T3:.*]] = "mhlo.reshape"(%[[T2]]) : (tensor<1xi64>) -> tensor<i64> |
| 50 | +// CHECK: %[[T3:.*]] = mhlo.reshape %[[T2]] : (tensor<1xi64>) -> tensor<i64> |
51 | 51 | // CHECK: %[[T4:.*]] = torch_c.from_builtin_tensor %[[T3]] : tensor<i64> -> !torch.vtensor<[],si64>
|
52 | 52 | // CHECK: return %[[T4]] : !torch.vtensor<[],si64>
|
53 | 53 | func.func @torch.prim.NumToTensor.Scalar$basic() -> !torch.vtensor<[], si64> {
|
@@ -229,16 +229,16 @@ func.func @torch.aten.batch_norm$no_bias_weight(%arg0: !torch.vtensor<[?,3,?,?],
|
229 | 229 | // CHECK: %true = torch.constant.bool true
|
230 | 230 | // CHECK: %[[VAL_4:.*]] = torch.prim.ListConstruct %int4, %int5 : (!torch.int, !torch.int) -> !torch.list<int>
|
231 | 231 | // CHECK: %[[VAL_5:.*]] = mhlo.constant dense<[1, 21, 20]> : tensor<3xi64>
|
232 |
| -// CHECK: %[[VAL_6:.*]] = "mhlo.dynamic_reshape"(%[[VAL_1]], %[[VAL_5]]) : (tensor<3x7x4x5xf32>, tensor<3xi64>) -> tensor<1x21x20xf32> |
| 232 | +// CHECK: %[[VAL_6:.*]] = mhlo.dynamic_reshape %[[VAL_1]], %[[VAL_5]] : (tensor<3x7x4x5xf32>, tensor<3xi64>) -> tensor<1x21x20xf32> |
233 | 233 | // CHECK: %[[VAL_7:.*]] = mhlo.constant dense<1.000000e+00> : tensor<21xf32>
|
234 | 234 | // CHECK: %[[VAL_8:.*]] = mhlo.constant dense<0.000000e+00> : tensor<21xf32>
|
235 | 235 | // CHECK: %[[VAL_9:.*]], %[[VAL_10:.*]], %[[VAL_11:.*]] = "mhlo.batch_norm_training"(%[[VAL_6]], %[[VAL_7]], %[[VAL_8]]) {epsilon = 9.99999974E-6 : f32, feature_index = 1 : i64} : (tensor<1x21x20xf32>, tensor<21xf32>, tensor<21xf32>) -> (tensor<1x21x20xf32>, tensor<21xf32>, tensor<21xf32>)
|
236 | 236 | // CHECK: %[[VAL_12:.*]] = mhlo.constant dense<[3, 7, 4, 5]> : tensor<4xi64>
|
237 |
| -// CHECK: %[[VAL_13:.*]] = "mhlo.dynamic_reshape"(%[[VAL_9]], %[[VAL_12]]) : (tensor<1x21x20xf32>, tensor<4xi64>) -> tensor<3x7x4x5xf32> |
| 237 | +// CHECK: %[[VAL_13:.*]] = mhlo.dynamic_reshape %[[VAL_9]], %[[VAL_12]] : (tensor<1x21x20xf32>, tensor<4xi64>) -> tensor<3x7x4x5xf32> |
238 | 238 | // CHECK: %[[VAL_14:.*]] = mhlo.constant dense<[3, 7, 1, 1]> : tensor<4xi64>
|
239 |
| -// CHECK: %[[VAL_15:.*]] = "mhlo.dynamic_reshape"(%[[VAL_10]], %[[VAL_14]]) : (tensor<21xf32>, tensor<4xi64>) -> tensor<3x7x1x1xf32> |
| 239 | +// CHECK: %[[VAL_15:.*]] = mhlo.dynamic_reshape %[[VAL_10]], %[[VAL_14]] : (tensor<21xf32>, tensor<4xi64>) -> tensor<3x7x1x1xf32> |
240 | 240 | // CHECK: %[[VAL_16:.*]] = mhlo.constant dense<[3, 7, 1, 1]> : tensor<4xi64>
|
241 |
| -// CHECK: %[[VAL_17:.*]] = "mhlo.dynamic_reshape"(%[[VAL_11]], %[[VAL_16]]) : (tensor<21xf32>, tensor<4xi64>) -> tensor<3x7x1x1xf32> |
| 241 | +// CHECK: %[[VAL_17:.*]] = mhlo.dynamic_reshape %[[VAL_11]], %[[VAL_16]] : (tensor<21xf32>, tensor<4xi64>) -> tensor<3x7x1x1xf32> |
242 | 242 | // CHECK: %[[VAL_18:.*]] = "mhlo.broadcast_in_dim"(%[[VAL_3]]) {broadcast_dimensions = dense<[2, 3]> : tensor<2xi64>} : (tensor<4x5xf32>) -> tensor<3x7x4x5xf32>
|
243 | 243 | // CHECK: %[[VAL_19:.*]] = "mhlo.broadcast_in_dim"(%[[VAL_2]]) {broadcast_dimensions = dense<[2, 3]> : tensor<2xi64>} : (tensor<4x5xf32>) -> tensor<3x7x4x5xf32>
|
244 | 244 | // CHECK: %[[VAL_20:.*]] = mhlo.multiply %[[VAL_13]], %[[VAL_18]] : tensor<3x7x4x5xf32>
|
|
0 commit comments