forked from open-telemetry/opentelemetry-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsampling.py
186 lines (142 loc) · 6.06 KB
/
sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
For general information about sampling, see `the specification <https://github.com/open-telemetry/opentelemetry-specification/blob/master/specification/trace/sdk.md#sampling>`_.
OpenTelemetry provides two types of samplers:
- `StaticSampler`
- `ProbabilitySampler`
A `StaticSampler` always returns the same sampling decision regardless of the conditions. Both possible StaticSamplers are already created:
- Always sample spans: `ALWAYS_ON`
- Never sample spans: `ALWAYS_OFF`
A `ProbabilitySampler` makes a random sampling decision based on the sampling probability given. If the span being sampled has a parent, `ProbabilitySampler` will respect the parent span's sampling decision.
Currently, sampling decisions are always made during the creation of the span. However, this might not always be the case in the future (see `OTEP #115 <https://github.com/open-telemetry/oteps/pull/115>`_).
Custom samplers can be created by subclassing `Sampler` and implementing `Sampler.should_sample`.
To use a sampler, pass it into the tracer provider constructor. For example:
.. code:: python
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import (
ConsoleSpanExporter,
SimpleExportSpanProcessor,
)
from opentelemetry.sdk.trace.sampling import ProbabilitySampler
# sample 1 in every 1000 traces
sampler = ProbabilitySampler(1/1000)
# set the sampler onto the global tracer provider
trace.set_tracer_provider(TracerProvider(sampler=sampler))
# set up an exporter for sampled spans
trace.get_tracer_provider().add_span_processor(
SimpleExportSpanProcessor(ConsoleSpanExporter())
)
# created spans will now be sampled by the ProbabilitySampler
with trace.get_tracer(__name__).start_as_current_span("Test Span"):
...
"""
import abc
from typing import Dict, Mapping, Optional, Sequence
# pylint: disable=unused-import
from opentelemetry.trace import Link, SpanContext
from opentelemetry.util.types import Attributes, AttributeValue
class Decision:
"""A sampling decision as applied to a newly-created Span.
Args:
sampled: Whether the `opentelemetry.trace.Span` should be sampled.
attributes: Attributes to add to the `opentelemetry.trace.Span`.
"""
def __repr__(self) -> str:
return "{}({}, attributes={})".format(
type(self).__name__, str(self.sampled), str(self.attributes)
)
def __init__(
self,
sampled: bool = False,
attributes: Optional[Mapping[str, "AttributeValue"]] = None,
) -> None:
self.sampled = sampled # type: bool
if attributes is None:
self.attributes = {} # type: Dict[str, "AttributeValue"]
else:
self.attributes = dict(attributes)
class Sampler(abc.ABC):
@abc.abstractmethod
def should_sample(
self,
parent_context: Optional["SpanContext"],
trace_id: int,
span_id: int,
name: str,
attributes: Optional[Attributes] = None,
links: Sequence["Link"] = (),
) -> "Decision":
pass
class StaticSampler(Sampler):
"""Sampler that always returns the same decision."""
def __init__(self, decision: "Decision"):
self._decision = decision
def should_sample(
self,
parent_context: Optional["SpanContext"],
trace_id: int,
span_id: int,
name: str,
attributes: Optional[Attributes] = None,
links: Sequence["Link"] = (),
) -> "Decision":
return self._decision
class ProbabilitySampler(Sampler):
"""
Sampler that makes sampling decisions probabalistically based on `rate`,
while also respecting the parent span sampling decision.
Args:
rate: Probability (between 0 and 1) that a span will be sampled
"""
def __init__(self, rate: float):
self._rate = rate
self._bound = self.get_bound_for_rate(self._rate)
# For compatibility with 64 bit trace IDs, the sampler checks the 64
# low-order bits of the trace ID to decide whether to sample a given trace.
TRACE_ID_LIMIT = (1 << 64) - 1
@classmethod
def get_bound_for_rate(cls, rate: float) -> int:
return round(rate * (cls.TRACE_ID_LIMIT + 1))
@property
def rate(self) -> float:
return self._rate
@rate.setter
def rate(self, new_rate: float) -> None:
self._rate = new_rate
self._bound = self.get_bound_for_rate(self._rate)
@property
def bound(self) -> int:
return self._bound
def should_sample(
self,
parent_context: Optional["SpanContext"],
trace_id: int,
span_id: int,
name: str,
attributes: Optional[Attributes] = None, # TODO
links: Sequence["Link"] = (),
) -> "Decision":
if parent_context is not None:
return Decision(parent_context.trace_flags.sampled)
return Decision(trace_id & self.TRACE_ID_LIMIT < self.bound)
ALWAYS_OFF = StaticSampler(Decision(False))
"""Sampler that never samples spans, regardless of the parent span's sampling decision."""
ALWAYS_ON = StaticSampler(Decision(True))
"""Sampler that always samples spans, regardless of the parent span's sampling decision."""
DEFAULT_OFF = ProbabilitySampler(0.0)
"""Sampler that respects its parent span's sampling decision, but otherwise never samples."""
DEFAULT_ON = ProbabilitySampler(1.0)
"""Sampler that respects its parent span's sampling decision, but otherwise always samples."""