Skip to content

Commit 15eeaa3

Browse files
committed
docs(notes): add 2025-05-25-exponential-en.md
1 parent c1a6b3b commit 15eeaa3

File tree

1 file changed

+112
-0
lines changed

1 file changed

+112
-0
lines changed

notes/2025-05-25-exponential-en.md

Lines changed: 112 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,112 @@
1+
---
2+
title: Exponential Formulas
3+
lang: en
4+
layout: post
5+
audio: false
6+
translated: false
7+
generated: true
8+
---
9+
10+
In science, several formulas describe transient or exponential growth/decay processes similar to the RL circuit current equation, where the behavior starts at a specific value (often zero) at \\( t = 0 \\) and approaches a steady-state value (like \\( V_0 \\) or \\( I_0 \\)) as time progresses, often involving the exponential term \\( e \\). Below is a list of such formulas from various domains of physics and engineering, each exhibiting similar exponential behavior.
11+
12+
### 1. **RC Circuit Charging (Capacitor Voltage)**
13+
- **Context**: In an RC circuit (resistor and capacitor in series), when a voltage is applied, the capacitor charges over time.
14+
- **Formula**:
15+
\\[
16+
V_C(t) = V_0 \left( 1 - e^{-\frac{t}{RC}} \right)
17+
\\]
18+
- **Variables**:
19+
- \\( V_C(t) \\): Voltage across the capacitor at time \\( t \\).
20+
- \\( V_0 \\): Maximum voltage (source voltage).
21+
- \\( R \\): Resistance (ohms).
22+
- \\( C \\): Capacitance (farads).
23+
- \\( RC \\): Time constant (\\( \tau \\)).
24+
- **Behavior**: At \\( t = 0 \\), \\( V_C = 0 \\). As \\( t \to \infty \\), \\( V_C \to V_0 \\).
25+
- **Similarity**: Like the RL circuit, it starts at 0 and approaches a maximum value exponentially.
26+
27+
### 2. **RC Circuit Discharging (Capacitor Voltage)**
28+
- **Context**: When a charged capacitor in an RC circuit is allowed to discharge through a resistor.
29+
- **Formula**:
30+
\\[
31+
V_C(t) = V_0 e^{-\frac{t}{RC}}
32+
\\]
33+
- **Variables**:
34+
- \\( V_0 \\): Initial voltage across the capacitor.
35+
- Others same as above.
36+
- **Behavior**: At \\( t = 0 \\), \\( V_C = V_0 \\). As \\( t \to \infty \\), \\( V_C \to 0 \\).
37+
- **Similarity**: Involves \\( e \\), but decays from a maximum to zero, complementary to the RL charging case.
38+
39+
### 3. **Radioactive Decay**
40+
- **Context**: In nuclear physics, the number of radioactive atoms decreases over time.
41+
- **Formula**:
42+
\\[
43+
N(t) = N_0 e^{-\lambda t}
44+
\\]
45+
- **Variables**:
46+
- \\( N(t) \\): Number of radioactive atoms at time \\( t \\).
47+
- \\( N_0 \\): Initial number of atoms.
48+
- \\( \lambda \\): Decay constant (s⁻¹).
49+
- \\( \tau = \frac{1}{\lambda} \\): Mean lifetime.
50+
- **Behavior**: At \\( t = 0 \\), \\( N = N_0 \\). As \\( t \to \infty \\), \\( N \to 0 \\).
51+
- **Similarity**: Uses \\( e \\) for exponential decay, analogous to RC discharging or RL circuit current decay when the voltage is removed.
52+
53+
### 4. **Newton’s Law of Cooling**
54+
- **Context**: Describes the cooling of an object in a cooler environment.
55+
- **Formula**:
56+
\\[
57+
T(t) = T_{\text{env}} + (T_0 - T_{\text{env}}) e^{-kt}
58+
\\]
59+
- **Variables**:
60+
- \\( T(t) \\): Temperature of the object at time \\( t \\).
61+
- \\( T_0 \\): Initial temperature of the object.
62+
- \\( T_{\text{env}} \\): Ambient temperature.
63+
- \\( k \\): Cooling constant (s⁻¹).
64+
- **Behavior**: At \\( t = 0 \\), \\( T = T_0 \\). As \\( t \to \infty \\), \\( T \to T_{\text{env}} \\).
65+
- **Similarity**: Exponential approach from an initial value to a steady-state value, using \\( e \\).
66+
67+
### 5. **Population Growth (Exponential Model)**
68+
- **Context**: In biology, models unrestricted population growth.
69+
- **Formula**:
70+
\\[
71+
P(t) = P_0 e^{rt}
72+
\\]
73+
- **Variables**:
74+
- \\( P(t) \\): Population at time \\( t \\).
75+
- \\( P_0 \\): Initial population.
76+
- \\( r \\): Growth rate (s⁻¹ or other time units).
77+
- **Behavior**: At \\( t = 0 \\), \\( P = P_0 \\). As \\( t \to \infty \\), \\( P \to \infty \\) (unbounded growth).
78+
- **Similarity**: Uses \\( e \\), but grows exponentially rather than approaching a finite limit (unlike RL/RC circuits).
79+
80+
### 6. **RL Circuit Current Decay (After Voltage Removal)**
81+
- **Context**: When the voltage source is removed from an RL circuit, the current decays.
82+
- **Formula**:
83+
\\[
84+
I(t) = I_0 e^{-\frac{R}{L}t}
85+
\\]
86+
- **Variables**:
87+
- Same as in the RL circuit charging formula.
88+
- **Behavior**: At \\( t = 0 \\), \\( I = I_0 \\). As \\( t \to \infty \\), \\( I \to 0 \\).
89+
- **Similarity**: Complementary to the RL charging case, showing exponential decay with \\( e \\).
90+
91+
### 7. **Damped Harmonic Oscillator (Under-Damped)**
92+
- **Context**: In mechanics, describes a system (e.g., spring-mass with friction) with damping.
93+
- **Formula**:
94+
\\[
95+
x(t) = A e^{-\gamma t} \cos(\omega t + \phi)
96+
\\]
97+
- **Variables**:
98+
- \\( x(t) \\): Displacement at time \\( t \\).
99+
- \\( A \\): Initial amplitude.
100+
- \\( \gamma \\): Damping constant.
101+
- \\( \omega \\): Angular frequency of oscillation.
102+
- \\( \phi \\): Phase angle.
103+
- **Behavior**: At \\( t = 0 \\), oscillation starts with amplitude \\( A \\). As \\( t \to \infty \\), \\( x \to 0 \\).
104+
- **Similarity**: The amplitude decays exponentially with \\( e^{-\gamma t} \\), similar to RL/RC decay.
105+
106+
### Common Characteristics
107+
- **Exponential Term**: All formulas use \\( e \\) to describe growth or decay.
108+
- **Initial and Final States**: They start at an initial value (often 0 or a maximum) and approach a steady-state value (0, \\( V_0 \\), or another constant).
109+
- **Time Constant**: Most involve a time constant (e.g., \\( L/R \\), \\( RC \\), \\( 1/\lambda \\)) that governs the rate of change.
110+
- **Applications**: These appear in electrical circuits, thermodynamics, nuclear physics, biology, and mechanics.
111+
112+
If you’d like, I can provide a chart comparing the behavior of a few of these (e.g., RL charging, RC charging, and Newton’s cooling) over time to visualize their exponential nature. Would you like me to generate such a chart? Alternatively, I can dive deeper into any of these formulas or explore others in specific fields!

0 commit comments

Comments
 (0)