-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathperlin.py
executable file
·253 lines (195 loc) · 6.83 KB
/
perlin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# std lib
from functools import partial
# 3rd-party
import numpy as np
import xarray as xr
try:
import cupy
except ImportError:
class cupy(object):
ndarray = False
import dask.array as da
from numba import cuda, jit
import numba as nb
# local modules
from xrspatial.utils import has_cuda
from xrspatial.utils import cuda_args
@jit(nopython=True, nogil=True, parallel=True, cache=True)
def _lerp(a, b, x):
return a + x * (b - a)
@jit(nopython=True, nogil=True, parallel=True, cache=True)
def _fade(t):
return 6 * t ** 5 - 15 * t ** 4 + 10 * t ** 3
@jit(nopython=True, nogil=True, parallel=True, cache=True)
def _gradient(h, x, y):
# assert(len(h.shape) == 2)
vectors = np.array([[0, 1], [0, -1], [1, 0], [-1, 0]])
out = np.zeros(h.shape)
for j in nb.prange(h.shape[1]):
for i in nb.prange(h.shape[0]):
f = np.mod(h[i, j], 4)
g = vectors[f]
out[i, j] = g[0] * x[i, j] + g[1] * y[i, j]
return out
def _perlin(p, x, y):
# coordinates of the top-left
xi = x.astype(int)
yi = y.astype(int)
# internal coordinates
xf = x - xi
yf = y - yi
# fade factors
u = _fade(xf)
v = _fade(yf)
# noise components
n00 = _gradient(p[p[xi] + yi], xf, yf)
n01 = _gradient(p[p[xi] + yi + 1], xf, yf - 1)
n11 = _gradient(p[p[xi + 1] + yi + 1], xf - 1, yf - 1)
n10 = _gradient(p[p[xi + 1] + yi], xf - 1, yf)
# combine noises
x1 = _lerp(n00, n10, u)
x2 = _lerp(n01, n11, u)
a = _lerp(x1, x2, v)
return a
def _perlin_numpy(data: np.ndarray,
freq: tuple,
seed: int) -> np.ndarray:
np.random.seed(seed)
p = np.random.permutation(2**20)
p = np.append(p, p)
height, width = data.shape
linx = np.linspace(0, freq[0], width, endpoint=False, dtype=np.float32)
liny = np.linspace(0, freq[1], height, endpoint=False, dtype=np.float32)
x, y = np.meshgrid(linx, liny)
data[:] = _perlin(p, x, y)
data[:] = (data - np.min(data)) / np.ptp(data)
return data
def _perlin_dask_numpy(data: da.Array,
freq: tuple,
seed: int) -> da.Array:
np.random.seed(seed)
p = np.random.permutation(2**20)
p = np.append(p, p)
height, width = data.shape
linx = da.linspace(0, freq[0], width, endpoint=False, dtype=np.float32)
liny = da.linspace(0, freq[1], height, endpoint=False, dtype=np.float32)
x, y = da.meshgrid(linx, liny)
_func = partial(_perlin, p)
data = da.map_blocks(_func, x, y, meta=np.array((), dtype=np.float32))
data = (data - da.min(data)) / da.ptp(data)
return data
@cuda.jit(device=True)
def _lerp_gpu(a, b, x):
return a + x * (b - a)
@cuda.jit(device=True)
def _fade_gpu(t):
return 6 * t ** 5 - 15 * t ** 4 + 10 * t ** 3
@cuda.jit(device=True)
def _gradient_gpu(vec, h, x, y):
f = h % 4
return vec[f][0] * x + vec[f][1] * y
@cuda.jit(fastmath=True, opt=True)
def _perlin_gpu(p, x0, x1, y0, y1, m, out):
# alloc and initialize array to be used in the gradient routine
vec = cuda.local.array((4, 2), nb.int32)
vec[0][0] = vec[1][0] = vec[2][1] = vec[3][1] = 0
vec[0][1] = vec[2][0] = 1
vec[1][1] = vec[3][0] = -1
i, j = nb.cuda.grid(2)
if i < out.shape[0] and j < out.shape[1]:
# coordinates of the top-left
y = y0 + i * (y1 - y0) / out.shape[0]
x = x0 + j * (x1 - x0) / out.shape[1]
# coordinates of the top-left
x_int = int(x)
y_int = int(y)
# internal coordinates
xf = x - x_int
yf = y - y_int
# fade factors
u = _fade_gpu(xf)
v = _fade_gpu(yf)
# noise components
n00 = _gradient_gpu(vec, p[p[x_int] + y_int], xf, yf)
n01 = _gradient_gpu(vec, p[p[x_int] + y_int + 1], xf, yf - 1)
n11 = _gradient_gpu(vec, p[p[x_int + 1] + y_int + 1], xf - 1, yf - 1)
n10 = _gradient_gpu(vec, p[p[x_int + 1] + y_int], xf - 1, yf)
# combine noises
x1 = _lerp_gpu(n00, n10, u)
x2 = _lerp_gpu(n01, n11, u)
out[i, j] = m * _lerp_gpu(x1, x2, v)
def _perlin_cupy(data: cupy.ndarray,
freq: tuple,
seed: int) -> cupy.ndarray:
# cupy.random.seed(seed)
# p = cupy.random.permutation(2**20)
# use numpy.random then transfer data to GPU to ensure the same result
# when running numpy backed and cupy backed data array.
np.random.seed(seed)
p = cupy.asarray(np.random.permutation(2**20))
p = cupy.append(p, p)
griddim, blockdim = cuda_args(data.shape)
_perlin_gpu[griddim, blockdim](p, 0, freq[0], 0, freq[1], 1, data)
minimum = cupy.amin(data)
maximum = cupy.amax(data)
data[:] = (data - minimum) / (maximum - minimum)
return data
def perlin(agg: xr.DataArray,
freq: tuple = (1, 1),
seed: int = 5,
name: str = 'perlin') -> xr.DataArray:
"""
Generate perlin noise aggregate.
Parameters
----------
agg : xr.DataArray
2D array of size width x height, will be used to determine
height/ width and which platform to use for calculation.
freq : tuple, default=(1,1)
(x, y) frequency multipliers.
seed : int, default=5
Seed for random number generator.
Returns
-------
perlin_agg : xarray.DataArray
2D array of perlin noise values.
References
----------
- Paul Panzer: https://stackoverflow.com/questions/42147776/producing-2d-perlin-noise-with-numpy # noqa
- ICA: http://www.mountaincartography.org/mt_hood/pdfs/nighbert_bump1.pdf # noqa
Examples
--------
.. plot::
:include-source:
import numpy as np
import xarray as xr
from xrspatial import perlin
W = 4
H = 3
data = np.zeros((H, W), dtype=np.float32)
raster = xr.DataArray(data, dims=['y', 'x'])
perlin_noise = perlin(raster)
.. sourcecode:: python
>>> print(perlin_noise)
<xarray.DataArray 'perlin' (y: 3, x: 4)>
array([[0.39268944, 0.27577767, 0.01621884, 0.05518942],
[1. , 0.8229485 , 0.2935367 , 0. ],
[1. , 0.8715414 , 0.41902685, 0.02916668]], dtype=float32) # noqa
Dimensions without coordinates: y, x
"""
# numpy case
if isinstance(agg.data, np.ndarray):
out = _perlin_numpy(agg.data, freq, seed)
# cupy case
elif has_cuda() and isinstance(agg.data, cupy.ndarray):
out = _perlin_cupy(agg.data, freq, seed)
# dask + numpy case
elif isinstance(agg.data, da.Array):
out = _perlin_dask_numpy(agg.data, freq, seed)
else:
raise TypeError('Unsupported Array Type: {}'.format(type(agg.data)))
result = xr.DataArray(out,
dims=agg.dims,
attrs=agg.attrs,
name=name)
return result