|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Mosaic from a single multitemporal dataset\n", |
| 8 | + "\n", |
| 9 | + "\n", |
| 10 | + "The goal of this notebook is to provide an example of how to create a cloud-free mosaic from Sentinel-2 imagery over a specific area over a time period. We first use `satsearch` to search for Sentinel-2 data then combine them together using `stackstac`. A median operation will be applied to merge the images into a single layer that could be save off into Azure blob storage as COGs for later use.\n", |
| 11 | + "\n", |
| 12 | + "\n", |
| 13 | + "## 1. Sentinel-2 Dataset\n", |
| 14 | + "\n", |
| 15 | + "Satellite images (also Earth observation imagery, spaceborne photography, or simply satellite photo) are images of Earth collected by imaging satellites operated by governments and businesses around the world (see https://en.wikipedia.org/wiki/Satellite_imagery). Its major applications include Earth observation and land cover monitoring. \n", |
| 16 | + "\n", |
| 17 | + "\n", |
| 18 | + "SENTINEL-2 (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/overview) is a wide-swath, high-resolution, multi-spectral imaging mission, supporting Copernicus Land Monitoring studies, including the monitoring of vegetation, soil and water cover, as well as observation of inland waterways and coastal areas.\n", |
| 19 | + "\n", |
| 20 | + "## 2. Imports" |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "code", |
| 25 | + "execution_count": null, |
| 26 | + "metadata": {}, |
| 27 | + "outputs": [], |
| 28 | + "source": [ |
| 29 | + "import stackstac\n", |
| 30 | + "from satsearch import Search\n", |
| 31 | + "\n", |
| 32 | + "import xrspatial.multispectral as ms\n", |
| 33 | + "\n", |
| 34 | + "import matplotlib.pyplot as plt" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "markdown", |
| 39 | + "metadata": {}, |
| 40 | + "source": [ |
| 41 | + "## 3. Load Sentinel 2 data\n", |
| 42 | + "\n", |
| 43 | + "In this example, we use data from `sentinel-s2-l2a-cogs` collection within a bounding box of `[-93.112301, 29.649001, -92.075965, 30.719868]`, and the time range considered is from `2019-07-01` to `2020-06-30`. And the collected data has less than 25% cloud coverage." |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "code", |
| 48 | + "execution_count": null, |
| 49 | + "metadata": {}, |
| 50 | + "outputs": [], |
| 51 | + "source": [ |
| 52 | + "items = Search(\n", |
| 53 | + " url=\"https://earth-search.aws.element84.com/v0\",\n", |
| 54 | + " bbox=[-93.112301, 29.649001, -92.075965, 30.719868],\n", |
| 55 | + " collections=[\"sentinel-s2-l2a-cogs\"],\n", |
| 56 | + " query={'eo:cloud_cover': {'lt': 25}},\n", |
| 57 | + " datetime=\"2019-07-01/2020-06-30\"\n", |
| 58 | + ").items()\n", |
| 59 | + "\n", |
| 60 | + "len(items)" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "markdown", |
| 65 | + "metadata": {}, |
| 66 | + "source": [ |
| 67 | + "Let's combine all the above STAC items into a lazy xarray with following settings:\n", |
| 68 | + "- projection: epsg=32613\n", |
| 69 | + "- resolution: 100m\n", |
| 70 | + "- bands: green (B02), red (B03), blue (B04), NIR (B08), SWIR1 (B11)" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": null, |
| 76 | + "metadata": {}, |
| 77 | + "outputs": [], |
| 78 | + "source": [ |
| 79 | + "bands = ['B02', 'B03', 'B04', 'B08', 'B11']\n", |
| 80 | + "\n", |
| 81 | + "stack_ds = stackstac.stack(\n", |
| 82 | + " items, epsg=32613, resolution=100, assets=bands\n", |
| 83 | + ")\n", |
| 84 | + "\n", |
| 85 | + "stack_ds" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "markdown", |
| 90 | + "metadata": {}, |
| 91 | + "source": [ |
| 92 | + "We can get a median composite for each month in the considered period of time:" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "code", |
| 97 | + "execution_count": null, |
| 98 | + "metadata": {}, |
| 99 | + "outputs": [], |
| 100 | + "source": [ |
| 101 | + "monthly = stack_ds.resample(time=\"MS\").median(\"time\", keep_attrs=True)\n", |
| 102 | + "monthly" |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "code", |
| 107 | + "execution_count": null, |
| 108 | + "metadata": {}, |
| 109 | + "outputs": [], |
| 110 | + "source": [ |
| 111 | + "import dask.diagnostics\n", |
| 112 | + "with dask.diagnostics.ProgressBar():\n", |
| 113 | + " monthly = monthly.compute()" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "markdown", |
| 118 | + "metadata": {}, |
| 119 | + "source": [ |
| 120 | + "## 4. Cloud-free scene using median operator\n", |
| 121 | + "\n", |
| 122 | + "In this step, we use a median operation to merge all monthly images into 1 single cloud-free layer. With an assumption that, along a multitemporal stack, clouds would not persist at the same geographical position from time to time (i.e image to image), the more data we have, the higher chance of dropping clouds." |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": null, |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [], |
| 130 | + "source": [ |
| 131 | + "median_scene = monthly.median(dim=['time'])" |
| 132 | + ] |
| 133 | + }, |
| 134 | + { |
| 135 | + "cell_type": "markdown", |
| 136 | + "metadata": {}, |
| 137 | + "source": [ |
| 138 | + "With 3 bands: red, green, blue, let's see the true color using the `true_color` function from `xrspatial.multispectral module` for each separate month and the median layer." |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "code", |
| 143 | + "execution_count": null, |
| 144 | + "metadata": {}, |
| 145 | + "outputs": [], |
| 146 | + "source": [ |
| 147 | + "bands_mapping = {v: i for i, v in enumerate(bands)}\n", |
| 148 | + "\n", |
| 149 | + "band_blue = bands_mapping['B02']\n", |
| 150 | + "band_green = bands_mapping['B03']\n", |
| 151 | + "band_red = bands_mapping['B04']" |
| 152 | + ] |
| 153 | + }, |
| 154 | + { |
| 155 | + "cell_type": "code", |
| 156 | + "execution_count": null, |
| 157 | + "metadata": {}, |
| 158 | + "outputs": [], |
| 159 | + "source": [ |
| 160 | + "months = 12\n", |
| 161 | + "imgs = []\n", |
| 162 | + "for month in range(months):\n", |
| 163 | + " # True color\n", |
| 164 | + " r = monthly[month][band_red]\n", |
| 165 | + " g = monthly[month][band_green]\n", |
| 166 | + " b = monthly[month][band_blue]\n", |
| 167 | + " img = ms.true_color(r, g, b)\n", |
| 168 | + " imgs.append(img)" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": null, |
| 174 | + "metadata": {}, |
| 175 | + "outputs": [], |
| 176 | + "source": [ |
| 177 | + "# Utility function for displaying images\n", |
| 178 | + "\n", |
| 179 | + "def display_images(images, columns=2, width=50, height=50):\n", |
| 180 | + " height = max(height, int(len(images)/columns) * height)\n", |
| 181 | + " plt.figure(figsize=(width, height))\n", |
| 182 | + " for i, image in enumerate(images):\n", |
| 183 | + " plt.subplot(len(images) / columns + 1, columns, i + 1)\n", |
| 184 | + " plt.imshow(image)" |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "markdown", |
| 189 | + "metadata": {}, |
| 190 | + "source": [ |
| 191 | + "#### Monthly data" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "code", |
| 196 | + "execution_count": null, |
| 197 | + "metadata": {}, |
| 198 | + "outputs": [], |
| 199 | + "source": [ |
| 200 | + "# takes some time to run\n", |
| 201 | + "display_images(imgs)" |
| 202 | + ] |
| 203 | + }, |
| 204 | + { |
| 205 | + "cell_type": "markdown", |
| 206 | + "metadata": {}, |
| 207 | + "source": [ |
| 208 | + "#### Median layer" |
| 209 | + ] |
| 210 | + }, |
| 211 | + { |
| 212 | + "cell_type": "code", |
| 213 | + "execution_count": null, |
| 214 | + "metadata": {}, |
| 215 | + "outputs": [], |
| 216 | + "source": [ |
| 217 | + "median_scene = monthly.median(dim=['time'])\n", |
| 218 | + "\n", |
| 219 | + "median_red_agg = median_scene[band_red]\n", |
| 220 | + "median_green_agg = median_scene[band_green]\n", |
| 221 | + "median_blue_agg = median_scene[band_blue]\n", |
| 222 | + "\n", |
| 223 | + "median_img = ms.true_color(median_red_agg, median_green_agg, median_blue_agg)\n", |
| 224 | + "\n", |
| 225 | + "median_img" |
| 226 | + ] |
| 227 | + }, |
| 228 | + { |
| 229 | + "cell_type": "markdown", |
| 230 | + "metadata": {}, |
| 231 | + "source": [ |
| 232 | + "### References\n", |
| 233 | + "\n", |
| 234 | + "- https://stackstac.readthedocs.io/en/latest/basic.html" |
| 235 | + ] |
| 236 | + } |
| 237 | + ], |
| 238 | + "metadata": { |
| 239 | + "kernelspec": { |
| 240 | + "display_name": "Python 3", |
| 241 | + "language": "python", |
| 242 | + "name": "python3" |
| 243 | + }, |
| 244 | + "language_info": { |
| 245 | + "codemirror_mode": { |
| 246 | + "name": "ipython", |
| 247 | + "version": 3 |
| 248 | + }, |
| 249 | + "file_extension": ".py", |
| 250 | + "mimetype": "text/x-python", |
| 251 | + "name": "python", |
| 252 | + "nbconvert_exporter": "python", |
| 253 | + "pygments_lexer": "ipython3", |
| 254 | + "version": "3.8.5" |
| 255 | + }, |
| 256 | + "widgets": { |
| 257 | + "state": {}, |
| 258 | + "version": "1.1.2" |
| 259 | + } |
| 260 | + }, |
| 261 | + "nbformat": 4, |
| 262 | + "nbformat_minor": 4 |
| 263 | +} |
0 commit comments