@@ -27,11 +27,6 @@ using namespace NKikimr;
27
27
using namespace NMiniKQL ;
28
28
using namespace NUdf ;
29
29
30
- inline ui64 SpreadHash (ui64 hash) {
31
- // https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
32
- return ((unsigned __int128)hash * 11400714819323198485llu) >> 64 ;
33
- }
34
-
35
30
36
31
class TDqOutputMultiConsumer : public IDqOutputConsumer {
37
32
public:
@@ -326,9 +321,6 @@ class TDqOutputHashPartitionConsumer : public IDqOutputConsumer {
326
321
hash = CombineHashes (hash, HashColumn (keyId, columnValue));
327
322
}
328
323
329
-
330
- hash = SpreadHash (hash);
331
-
332
324
return hash % Outputs.size ();
333
325
}
334
326
@@ -341,8 +333,6 @@ class TDqOutputHashPartitionConsumer : public IDqOutputConsumer {
341
333
hash = CombineHashes (hash, HashColumn (keyId, values[KeyColumns[keyId].Index ]));
342
334
}
343
335
344
- hash = SpreadHash (hash);
345
-
346
336
return hash % Outputs.size ();
347
337
}
348
338
// //////////////////////////////////////////////////////////////////////////////////////////////////////////
@@ -480,8 +470,6 @@ class TDqOutputHashPartitionConsumerScalar : public IDqOutputConsumer {
480
470
hash = CombineHashes (hash, HashColumn (keyId, values[KeyColumns_[keyId].Index ]));
481
471
}
482
472
483
- hash = SpreadHash (hash);
484
-
485
473
return hash % Outputs_.size ();
486
474
}
487
475
@@ -695,9 +683,6 @@ class TDqOutputHashPartitionConsumerBlock : public IDqOutputConsumer {
695
683
}
696
684
hash = CombineHashes (hash, keyHash);
697
685
}
698
-
699
- hash = SpreadHash (hash);
700
-
701
686
return hash % Outputs_.size ();
702
687
}
703
688
0 commit comments