forked from pymc-devs/pymc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistribution.py
1119 lines (974 loc) · 44.1 KB
/
distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2020 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextvars
import inspect
import multiprocessing
import numbers
import sys
import types
import warnings
from typing import TYPE_CHECKING
import dill
if TYPE_CHECKING:
from typing import Optional, Callable
import numpy as np
import theano
import theano.tensor as tt
from theano import function
from pymc3.distributions.shape_utils import (
broadcast_dist_samples_shape,
get_broadcastable_dist_samples,
to_tuple,
)
from pymc3.memoize import memoize
from pymc3.model import (
ContextMeta,
FreeRV,
Model,
MultiObservedRV,
ObservedRV,
build_named_node_tree,
)
from pymc3.util import get_repr_for_variable, get_var_name
from pymc3.vartypes import string_types, theano_constant
__all__ = [
"DensityDist",
"Distribution",
"Continuous",
"Discrete",
"NoDistribution",
"TensorType",
"draw_values",
"generate_samples",
]
vectorized_ppc = contextvars.ContextVar(
"vectorized_ppc", default=None
) # type: contextvars.ContextVar[Optional[Callable]]
PLATFORM = sys.platform
class _Unpickling:
pass
class Distribution:
"""Statistical distribution"""
def __new__(cls, name, *args, **kwargs):
if name is _Unpickling:
return object.__new__(cls) # for pickle
try:
model = Model.get_context()
except TypeError:
raise TypeError(
"No model on context stack, which is needed to "
"instantiate distributions. Add variable inside "
"a 'with model:' block, or use the '.dist' syntax "
"for a standalone distribution."
)
if not isinstance(name, string_types):
raise TypeError(f"Name needs to be a string but got: {name}")
data = kwargs.pop("observed", None)
cls.data = data
if isinstance(data, ObservedRV) or isinstance(data, FreeRV):
raise TypeError("observed needs to be data but got: {}".format(type(data)))
total_size = kwargs.pop("total_size", None)
dims = kwargs.pop("dims", None)
has_shape = "shape" in kwargs
shape = kwargs.pop("shape", None)
if dims is not None:
if shape is not None:
raise ValueError("Specify only one of 'dims' or 'shape'")
if isinstance(dims, string_types):
dims = (dims,)
shape = model.shape_from_dims(dims)
# failsafe against 0-shapes
if shape is not None and any(np.atleast_1d(shape) <= 0):
raise ValueError(
f"Distribution initialized with invalid shape {shape}. This is not allowed."
)
# Some distributions do not accept shape=None
if has_shape or shape is not None:
dist = cls.dist(*args, **kwargs, shape=shape)
else:
dist = cls.dist(*args, **kwargs)
return model.Var(name, dist, data, total_size, dims=dims)
def __getnewargs__(self):
return (_Unpickling,)
@classmethod
def dist(cls, *args, **kwargs):
dist = object.__new__(cls)
dist.__init__(*args, **kwargs)
return dist
def __init__(
self, shape, dtype, testval=None, defaults=(), transform=None, broadcastable=None, dims=None
):
self.shape = np.atleast_1d(shape)
if False in (np.floor(self.shape) == self.shape):
raise TypeError("Expected int elements in shape")
self.dtype = dtype
self.type = TensorType(self.dtype, self.shape, broadcastable)
self.testval = testval
self.defaults = defaults
self.transform = transform
def default(self):
return np.asarray(self.get_test_val(self.testval, self.defaults), self.dtype)
def get_test_val(self, val, defaults):
if val is None:
for v in defaults:
if hasattr(self, v) and np.all(np.isfinite(self.getattr_value(v))):
return self.getattr_value(v)
else:
return self.getattr_value(val)
if val is None:
raise AttributeError(
"%s has no finite default value to use, "
"checked: %s. Pass testval argument or "
"adjust so value is finite." % (self, str(defaults))
)
def getattr_value(self, val):
if isinstance(val, string_types):
val = getattr(self, val)
if isinstance(val, tt.TensorVariable):
return val.tag.test_value
if isinstance(val, tt.sharedvar.TensorSharedVariable):
return val.get_value()
if isinstance(val, theano_constant):
return val.value
return val
def _distr_parameters_for_repr(self):
"""Return the names of the parameters for this distribution (e.g. "mu"
and "sigma" for Normal). Used in generating string (and LaTeX etc.)
representations of Distribution objects. By default based on inspection
of __init__, but can be overwritten if necessary (e.g. to avoid including
"sd" and "tau").
"""
return inspect.getfullargspec(self.__init__).args[1:]
def _distr_name_for_repr(self):
return self.__class__.__name__
def _str_repr(self, name=None, dist=None, formatting="plain"):
"""
Generate string representation for this distribution, optionally
including LaTeX markup (formatting='latex').
Parameters
----------
name : str
name of the distribution
dist : Distribution
the distribution object
formatting : str
one of { "latex", "plain", "latex_with_params", "plain_with_params" }
"""
if dist is None:
dist = self
if name is None:
name = "[unnamed]"
supported_formattings = {"latex", "plain", "latex_with_params", "plain_with_params"}
if not formatting in supported_formattings:
raise ValueError(f"Unsupported formatting ''. Choose one of {supported_formattings}.")
param_names = self._distr_parameters_for_repr()
param_values = [
get_repr_for_variable(getattr(dist, x), formatting=formatting) for x in param_names
]
if "latex" in formatting:
param_string = ",~".join(
[fr"\mathit{{{name}}}={value}" for name, value in zip(param_names, param_values)]
)
if formatting == "latex_with_params":
return r"$\text{{{var_name}}} \sim \text{{{distr_name}}}({params})$".format(
var_name=name, distr_name=dist._distr_name_for_repr(), params=param_string
)
return r"$\text{{{var_name}}} \sim \text{{{distr_name}}}$".format(
var_name=name, distr_name=dist._distr_name_for_repr()
)
else:
# one of the plain formattings
param_string = ", ".join(
[f"{name}={value}" for name, value in zip(param_names, param_values)]
)
if formatting == "plain_with_params":
return f"{name} ~ {dist._distr_name_for_repr()}({param_string})"
return f"{name} ~ {dist._distr_name_for_repr()}"
def __str__(self, **kwargs):
try:
return self._str_repr(formatting="plain", **kwargs)
except:
return super().__str__()
def _repr_latex_(self, *, formatting="latex_with_params", **kwargs):
"""Magic method name for IPython to use for LaTeX formatting."""
return self._str_repr(formatting=formatting, **kwargs)
def logp_nojac(self, *args, **kwargs):
"""Return the logp, but do not include a jacobian term for transforms.
If we use different parametrizations for the same distribution, we
need to add the determinant of the jacobian of the transformation
to make sure the densities still describe the same distribution.
However, MAP estimates are not invariant with respect to the
parametrization, we need to exclude the jacobian terms in this case.
This function should be overwritten in base classes for transformed
distributions.
"""
return self.logp(*args, **kwargs)
def logp_sum(self, *args, **kwargs):
"""Return the sum of the logp values for the given observations.
Subclasses can use this to improve the speed of logp evaluations
if only the sum of the logp values is needed.
"""
return tt.sum(self.logp(*args, **kwargs))
__latex__ = _repr_latex_
def TensorType(dtype, shape, broadcastable=None):
if broadcastable is None:
broadcastable = np.atleast_1d(shape) == 1
return tt.TensorType(str(dtype), broadcastable)
class NoDistribution(Distribution):
def __init__(
self,
shape,
dtype,
testval=None,
defaults=(),
transform=None,
parent_dist=None,
*args,
**kwargs,
):
super().__init__(
shape=shape, dtype=dtype, testval=testval, defaults=defaults, *args, **kwargs
)
self.parent_dist = parent_dist
def __getattr__(self, name):
# Do not use __getstate__ and __setstate__ from parent_dist
# to avoid infinite recursion during unpickling
if name.startswith("__"):
raise AttributeError("'NoDistribution' has no attribute '%s'" % name)
return getattr(self.parent_dist, name)
def logp(self, x):
"""Calculate log probability.
Parameters
----------
x: numeric
Value for which log-probability is calculated.
Returns
-------
TensorVariable
"""
return tt.zeros_like(x)
def _distr_parameters_for_repr(self):
return []
class Discrete(Distribution):
"""Base class for discrete distributions"""
def __init__(self, shape=(), dtype=None, defaults=("mode",), *args, **kwargs):
if dtype is None:
if theano.config.floatX == "float32":
dtype = "int16"
else:
dtype = "int64"
if dtype != "int16" and dtype != "int64":
raise TypeError("Discrete classes expect dtype to be int16 or int64.")
if kwargs.get("transform", None) is not None:
raise ValueError("Transformations for discrete distributions " "are not allowed.")
super().__init__(shape, dtype, defaults=defaults, *args, **kwargs)
class Continuous(Distribution):
"""Base class for continuous distributions"""
def __init__(self, shape=(), dtype=None, defaults=("median", "mean", "mode"), *args, **kwargs):
if dtype is None:
dtype = theano.config.floatX
super().__init__(shape, dtype, defaults=defaults, *args, **kwargs)
class DensityDist(Distribution):
"""Distribution based on a given log density function.
A distribution with the passed log density function is created.
Requires a custom random function passed as kwarg `random` to
enable prior or posterior predictive sampling.
"""
def __init__(
self,
logp,
shape=(),
dtype=None,
testval=0,
random=None,
wrap_random_with_dist_shape=True,
check_shape_in_random=True,
*args,
**kwargs,
):
"""
Parameters
----------
logp: callable
A callable that has the following signature ``logp(value)`` and
returns a theano tensor that represents the distribution's log
probability density.
shape: tuple (Optional): defaults to `()`
The shape of the distribution. The default value indicates a scalar.
If the distribution is *not* scalar-valued, the programmer should pass
a value here.
dtype: None, str (Optional)
The dtype of the distribution.
testval: number or array (Optional)
The ``testval`` of the RV's tensor that follow the ``DensityDist``
distribution.
random: None or callable (Optional)
If ``None``, no random method is attached to the ``DensityDist``
instance.
If a callable, it is used as the distribution's ``random`` method.
The behavior of this callable can be altered with the
``wrap_random_with_dist_shape`` parameter.
The supplied callable must have the following signature:
``random(point=None, size=None, **kwargs)``, where ``point`` is a
``None`` or a dictionary of random variable names and their
corresponding values (similar to what ``MultiTrace.get_point``
returns). ``size`` is the number of IID draws to take from the
distribution. Any extra keyword argument can be added as required.
wrap_random_with_dist_shape: bool (Optional)
If ``True``, the provided ``random`` callable is passed through
``generate_samples`` to make the random number generator aware of
the ``DensityDist`` instance's ``shape``.
If ``False``, it is used exactly as it was provided.
check_shape_in_random: bool (Optional)
If ``True``, the shape of the random samples generate in the
``random`` method is checked with the expected return shape. This
test is only performed if ``wrap_random_with_dist_shape is False``.
args, kwargs: (Optional)
These are passed to the parent class' ``__init__``.
Notes
-----
If the ``random`` method is wrapped with dist shape, what this
means is that the ``random`` callable will be wrapped with the
:func:`~genereate_samples` function. The distribution's shape will
be passed to :func:`~generate_samples` as the ``dist_shape``
parameter. Any extra ``kwargs`` provided to ``random`` will be
passed as ``not_broadcast_kwargs`` of :func:`~generate_samples`.
Examples
--------
.. code-block:: python
with pm.Model():
mu = pm.Normal('mu',0,1)
normal_dist = pm.Normal.dist(mu, 1)
pm.DensityDist(
'density_dist',
normal_dist.logp,
observed=np.random.randn(100),
random=normal_dist.random
)
trace = pm.sample(100)
If the ``DensityDist`` is multidimensional, some care must be taken
with the supplied ``random`` method. By default, the supplied random
is wrapped by :func:`~generate_samples` to make it aware of the
multidimensional distribution's shape.
This can be prevented setting ``wrap_random_with_dist_shape=False``.
Furthermore, the ``size`` parameter is interpreted as the number of
IID draws to take from this multidimensional distribution.
.. code-block:: python
with pm.Model():
mu = pm.Normal('mu', 0 , 1)
normal_dist = pm.Normal.dist(mu, 1, shape=3)
dens = pm.DensityDist(
'density_dist',
normal_dist.logp,
observed=np.random.randn(100, 3),
shape=3,
random=normal_dist.random,
)
prior = pm.sample_prior_predictive(10)['density_dist']
assert prior.shape == (10, 100, 3)
If ``wrap_random_with_dist_shape=False``, we start to get samples of
an incorrect shape. By default, we can try to catch these situations.
.. code-block:: python
with pm.Model():
mu = pm.Normal('mu', 0 , 1)
normal_dist = pm.Normal.dist(mu, 1, shape=3)
dens = pm.DensityDist(
'density_dist',
normal_dist.logp,
observed=np.random.randn(100, 3),
shape=3,
random=normal_dist.random,
wrap_random_with_dist_shape=False, # Is True by default
)
err = None
try:
prior = pm.sample_prior_predictive(10)['density_dist']
except RuntimeError as e:
err = e
assert isinstance(err, RuntimeError)
The default catching can be disabled with the
``check_shape_in_random`` parameter.
.. code-block:: python
with pm.Model():
mu = pm.Normal('mu', 0 , 1)
normal_dist = pm.Normal.dist(mu, 1, shape=3)
dens = pm.DensityDist(
'density_dist',
normal_dist.logp,
observed=np.random.randn(100, 3),
shape=3,
random=normal_dist.random,
wrap_random_with_dist_shape=False, # Is True by default
check_shape_in_random=False, # Is True by default
)
prior = pm.sample_prior_predictive(10)['density_dist']
# We get samples with an incorrect shape
assert prior.shape != (10, 100, 3)
If you use callables that work with ``scipy.stats`` rvs, you must
be aware that their ``size`` parameter is not the number of IID
samples to draw from a distribution, but the desired ``shape`` of
the returned array of samples. It is the user's responsibility to
wrap the callable to make it comply with PyMC3's interpretation
of ``size``.
.. code-block:: python
with pm.Model():
mu = pm.Normal('mu', 0 , 1)
normal_dist = pm.Normal.dist(mu, 1, shape=3)
dens = pm.DensityDist(
'density_dist',
normal_dist.logp,
observed=np.random.randn(100, 3),
shape=3,
random=stats.norm.rvs,
pymc3_size_interpretation=False, # Is True by default
)
prior = pm.sample_prior_predictive(10)['density_dist']
assert prior.shape == (10, 100, 3)
"""
if dtype is None:
dtype = theano.config.floatX
super().__init__(shape, dtype, testval, *args, **kwargs)
self.logp = logp
if type(self.logp) == types.MethodType:
if PLATFORM != "linux":
warnings.warn(
"You are passing a bound method as logp for DensityDist, this can lead to "
"errors when sampling on platforms other than Linux. Consider using a "
"plain function instead, or subclass Distribution."
)
elif type(multiprocessing.get_context()) != multiprocessing.context.ForkContext:
warnings.warn(
"You are passing a bound method as logp for DensityDist, this can lead to "
"errors when sampling when multiprocessing cannot rely on forking. Consider using a "
"plain function instead, or subclass Distribution."
)
self.rand = random
self.wrap_random_with_dist_shape = wrap_random_with_dist_shape
self.check_shape_in_random = check_shape_in_random
def __getstate__(self):
# We use dill to serialize the logp function, as this is almost
# always defined in the notebook and won't be pickled correctly.
# Fix https://github.com/pymc-devs/pymc3/issues/3844
try:
logp = dill.dumps(self.logp)
except RecursionError as err:
if type(self.logp) == types.MethodType:
raise ValueError(
"logp for DensityDist is a bound method, leading to RecursionError while serializing"
) from err
else:
raise err
vals = self.__dict__.copy()
vals["logp"] = logp
return vals
def __setstate__(self, vals):
vals["logp"] = dill.loads(vals["logp"])
self.__dict__ = vals
def random(self, point=None, size=None, **kwargs):
if self.rand is not None:
not_broadcast_kwargs = dict(point=point)
not_broadcast_kwargs.update(**kwargs)
if self.wrap_random_with_dist_shape:
size = to_tuple(size)
with _DrawValuesContextBlocker():
test_draw = generate_samples(
self.rand,
size=None,
not_broadcast_kwargs=not_broadcast_kwargs,
)
test_shape = test_draw.shape
if self.shape[: len(size)] == size:
dist_shape = size + self.shape
else:
dist_shape = self.shape
broadcast_shape = broadcast_dist_samples_shape([dist_shape, test_shape], size=size)
broadcast_shape = broadcast_shape[: len(broadcast_shape) - len(test_shape)]
samples = generate_samples(
self.rand,
broadcast_shape=broadcast_shape,
size=size,
not_broadcast_kwargs=not_broadcast_kwargs,
)
else:
samples = self.rand(point=point, size=size, **kwargs)
if self.check_shape_in_random:
expected_shape = self.shape if size is None else to_tuple(size) + self.shape
if not expected_shape == samples.shape:
raise RuntimeError(
"DensityDist encountered a shape inconsistency "
"while drawing samples using the supplied random "
"function. Was expecting to get samples of shape "
"{expected} but got {got} instead.\n"
"Whenever possible wrap_random_with_dist_shape = True "
"is recommended.\n"
"Be aware that the random callable provided as the "
"DensityDist random method cannot "
"adapt to shape changes in the distribution's "
"shape, which sometimes are necessary for sampling "
"when the model uses pymc3.Data or theano shared "
"tensors, or when the DensityDist has observed "
"values.\n"
"This check can be disabled by passing "
"check_shape_in_random=False when the DensityDist "
"is initialized.".format(
expected=expected_shape,
got=samples.shape,
)
)
return samples
else:
raise ValueError(
"Distribution was not passed any random method. "
"Define a custom random method and pass it as kwarg random"
)
def _distr_parameters_for_repr(self):
return []
class _DrawValuesContext(metaclass=ContextMeta, context_class="_DrawValuesContext"):
"""A context manager class used while drawing values with draw_values"""
def __new__(cls, *args, **kwargs):
# resolves the parent instance
instance = super().__new__(cls)
instance._parent = cls.get_context(error_if_none=False)
return instance
def __init__(self):
if self.parent is not None:
# All _DrawValuesContext instances that are in the context of
# another _DrawValuesContext will share the reference to the
# drawn_vars dictionary. This means that separate branches
# in the nested _DrawValuesContext context tree will see the
# same drawn values.
# The drawn_vars keys shall be (RV, size) tuples
self.drawn_vars = self.parent.drawn_vars
else:
self.drawn_vars = dict()
@property
def parent(self):
return self._parent
class _DrawValuesContextBlocker(_DrawValuesContext):
"""
Context manager that starts a new drawn variables context disregarding all
parent contexts. This can be used inside a random method to ensure that
the drawn values wont be the ones cached by previous calls
"""
def __new__(cls, *args, **kwargs):
# resolves the parent instance
instance = super().__new__(cls)
instance._parent = None
return instance
def __init__(self):
self.drawn_vars = dict()
def is_fast_drawable(var):
return isinstance(
var, (numbers.Number, np.ndarray, theano_constant, tt.sharedvar.SharedVariable)
)
def draw_values(params, point=None, size=None):
"""
Draw (fix) parameter values. Handles a number of cases:
1) The parameter is a scalar
2) The parameter is an RV
a) parameter can be fixed to the value in the point
b) parameter can be fixed by sampling from the RV
c) parameter can be fixed using tag.test_value (last resort)
3) The parameter is a tensor variable/constant. Can be evaluated using
theano.function, but a variable may contain nodes which
a) are named parameters in the point
b) are RVs with a random method
"""
# The following check intercepts and redirects calls to
# draw_values in the context of sample_posterior_predictive
size = to_tuple(size)
ppc_sampler = vectorized_ppc.get(None)
if ppc_sampler is not None:
# this is being done inside new, vectorized sample_posterior_predictive
return ppc_sampler(params, trace=point, samples=size)
if point is None:
point = {}
# Get fast drawable values (i.e. things in point or numbers, arrays,
# constants or shares, or things that were already drawn in related
# contexts)
with _DrawValuesContext() as context:
params = dict(enumerate(params))
drawn = context.drawn_vars
evaluated = {}
symbolic_params = []
for i, p in params.items():
# If the param is fast drawable, then draw the value immediately
if is_fast_drawable(p):
v = _draw_value(p, point=point, size=size)
evaluated[i] = v
continue
name = getattr(p, "name", None)
if (p, size) in drawn:
# param was drawn in related contexts
v = drawn[(p, size)]
evaluated[i] = v
# We filter out Deterministics by checking for `model` attribute
elif name is not None and hasattr(p, "model") and name in point:
# param.name is in point
v = point[name]
evaluated[i] = drawn[(p, size)] = v
else:
# param still needs to be drawn
symbolic_params.append((i, p))
if not symbolic_params:
# We only need to enforce the correct order if there are symbolic
# params that could be drawn in variable order
return [evaluated[i] for i in params]
# Distribution parameters may be nodes which have named node-inputs
# specified in the point. Need to find the node-inputs, their
# parents and children to replace them.
leaf_nodes, named_nodes_descendents, named_nodes_ancestors = build_named_node_tree(
(param for _, param in symbolic_params if hasattr(param, "name"))
)
# Init givens and the stack of nodes to try to `_draw_value` from
givens = {
p.name: (p, v) for (p, size), v in drawn.items() if getattr(p, "name", None) is not None
}
stack = list(leaf_nodes.values())
while stack:
next_ = stack.pop(0)
if (next_, size) in drawn:
# If the node already has a givens value, skip it
continue
elif isinstance(next_, (theano_constant, tt.sharedvar.SharedVariable)):
# If the node is a theano.tensor.TensorConstant or a
# theano.tensor.sharedvar.SharedVariable, its value will be
# available automatically in _compile_theano_function so
# we can skip it. Furthermore, if this node was treated as a
# TensorVariable that should be compiled by theano in
# _compile_theano_function, it would raise a `TypeError:
# ('Constants not allowed in param list', ...)` for
# TensorConstant, and a `TypeError: Cannot use a shared
# variable (...) as explicit input` for SharedVariable.
# ObservedRV and MultiObservedRV instances are ViewOPs
# of TensorConstants or SharedVariables, we must add them
# to the stack or risk evaluating deterministics with the
# wrong values (issue #3354)
stack.extend(
[
node
for node in named_nodes_descendents[next_]
if isinstance(node, (ObservedRV, MultiObservedRV))
and (node, size) not in drawn
]
)
continue
else:
# If the node does not have a givens value, try to draw it.
# The named node's children givens values must also be taken
# into account.
children = named_nodes_ancestors[next_]
temp_givens = [givens[k] for k in givens if k in children]
try:
# This may fail for autotransformed RVs, which don't
# have the random method
value = _draw_value(next_, point=point, givens=temp_givens, size=size)
givens[next_.name] = (next_, value)
drawn[(next_, size)] = value
except theano.gof.fg.MissingInputError:
# The node failed, so we must add the node's parents to
# the stack of nodes to try to draw from. We exclude the
# nodes in the `params` list.
stack.extend(
[
node
for node in named_nodes_descendents[next_]
if node is not None and (node, size) not in drawn
]
)
# the below makes sure the graph is evaluated in order
# test_distributions_random::TestDrawValues::test_draw_order fails without it
# The remaining params that must be drawn are all hashable
to_eval = set()
missing_inputs = {j for j, p in symbolic_params}
while to_eval or missing_inputs:
if to_eval == missing_inputs:
raise ValueError(
"Cannot resolve inputs for {}".format(
[get_var_name(params[j]) for j in to_eval]
)
)
to_eval = set(missing_inputs)
missing_inputs = set()
for param_idx in to_eval:
param = params[param_idx]
if (param, size) in drawn:
evaluated[param_idx] = drawn[(param, size)]
else:
try: # might evaluate in a bad order,
# Sometimes _draw_value recurrently calls draw_values.
# This may set values for certain nodes in the drawn
# dictionary, but they don't get added to the givens
# dictionary. Here, we try to fix that.
if param in named_nodes_ancestors:
for node in named_nodes_ancestors[param]:
if node.name not in givens and (node, size) in drawn:
givens[node.name] = (node, drawn[(node, size)])
value = _draw_value(param, point=point, givens=givens.values(), size=size)
evaluated[param_idx] = drawn[(param, size)] = value
givens[param.name] = (param, value)
except theano.gof.fg.MissingInputError:
missing_inputs.add(param_idx)
return [evaluated[j] for j in params] # set the order back
@memoize
def _compile_theano_function(param, vars, givens=None):
"""Compile theano function for a given parameter and input variables.
This function is memoized to avoid repeating costly theano compilations
when repeatedly drawing values, which is done when generating posterior
predictive samples.
Parameters
----------
param: Model variable from which to draw value
vars: Children variables of `param`
givens: Variables to be replaced in the Theano graph
Returns
-------
A compiled theano function that takes the values of `vars` as input
positional args
"""
f = function(
vars,
param,
givens=givens,
rebuild_strict=True,
on_unused_input="ignore",
allow_input_downcast=True,
)
return vectorize_theano_function(f, inputs=vars, output=param)
def vectorize_theano_function(f, inputs, output):
"""Takes a compiled theano function and wraps it with a vectorized version.
Theano compiled functions expect inputs and outputs of a fixed number of
dimensions. In our context, these usually come from deterministics which
are compiled against a given RV, with its core shape. If we draw i.i.d.
samples from said RV, we would not be able to compute the deterministic
over the i.i.d sampled dimensions (i.e. those that are not the core
dimensions of the RV). To deal with this problem, we wrap the theano
compiled function with numpy.vectorize, providing the correct signature
for the core dimensions. The extra dimensions, will be interpreted as
i.i.d. sampled axis and will be broadcast following the usual rules.
Parameters
----------
f: theano compiled function
inputs: list of theano variables used as inputs for the function
givens: theano variable which is the output of the function
Notes
-----
If inputs is an empty list (theano function with no inputs needed), then
the same `f` is returned.
Only functions that return a single theano variable's value can be
vectorized.
Returns
-------
A function which wraps `f` with numpy.vectorize with the apropriate call
signature.
"""
inputs_signatures = ",".join(
[
get_vectorize_signature(var, var_name=f"i_{input_ind}")
for input_ind, var in enumerate(inputs)
]
)
if len(inputs_signatures) > 0:
output_signature = get_vectorize_signature(output, var_name="o")
signature = inputs_signatures + "->" + output_signature
return np.vectorize(f, signature=signature)
else:
return f
def get_vectorize_signature(var, var_name="i"):
if var.ndim == 0:
return "()"
else:
sig = ",".join([f"{var_name}_{axis_ind}" for axis_ind in range(var.ndim)])
return f"({sig})"
def _draw_value(param, point=None, givens=None, size=None):
"""Draw a random value from a distribution or return a constant.
Parameters
----------
param: number, array like, theano variable or pymc3 random variable
The value or distribution. Constants or shared variables
will be converted to an array and returned. Theano variables
are evaluated. If `param` is a pymc3 random variables, draw
a new value from it and return that, unless a value is specified
in `point`.
point: dict, optional
A dictionary from pymc3 variable names to their values.
givens: dict, optional
A dictionary from theano variables to their values. These values
are used to evaluate `param` if it is a theano variable.
size: int, optional
Number of samples
"""
if isinstance(param, (numbers.Number, np.ndarray)):
return param
elif isinstance(param, theano_constant):
return param.value
elif isinstance(param, tt.sharedvar.SharedVariable):
return param.get_value()
elif isinstance(param, (tt.TensorVariable, MultiObservedRV)):
if point and hasattr(param, "model") and param.name in point:
return point[param.name]
elif hasattr(param, "random") and param.random is not None:
return param.random(point=point, size=size)
elif (
hasattr(param, "distribution")
and hasattr(param.distribution, "random")
and param.distribution.random is not None
):
if hasattr(param, "observations"):
# shape inspection for ObservedRV
dist_tmp = param.distribution
try:
distshape = param.observations.shape.eval()
except AttributeError:
distshape = param.observations.shape
dist_tmp.shape = distshape
try:
return dist_tmp.random(point=point, size=size)
except (ValueError, TypeError):
# reset shape to account for shape changes
# with theano.shared inputs
dist_tmp.shape = np.array([])
# We want to draw values to infer the dist_shape,
# we don't want to store these drawn values to the context
with _DrawValuesContextBlocker():
val = np.atleast_1d(dist_tmp.random(point=point, size=None))
# Sometimes point may change the size of val but not the
# distribution's shape
if point and size is not None:
temp_size = np.atleast_1d(size)
if all(val.shape[: len(temp_size)] == temp_size):
dist_tmp.shape = val.shape[len(temp_size) :]
else:
dist_tmp.shape = val.shape
return dist_tmp.random(point=point, size=size)
else:
return param.distribution.random(point=point, size=size)
else:
if givens:
variables, values = list(zip(*givens))
else:
variables = values = []
# We only truly care if the ancestors of param that were given
# value have the matching dshape and val.shape
param_ancestors = set(theano.gof.graph.ancestors([param], blockers=list(variables)))
inputs = [(var, val) for var, val in zip(variables, values) if var in param_ancestors]
if inputs:
input_vars, input_vals = list(zip(*inputs))