forked from pymc-devs/pymc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathposterior_predictive.py
706 lines (633 loc) · 28.8 KB
/
posterior_predictive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
import contextvars
import logging
import numbers
import warnings
from collections import UserDict
from contextlib import AbstractContextManager
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
List,
Optional,
Set,
Tuple,
Union,
cast,
overload,
)
import numpy as np
import theano
import theano.tensor as tt
from arviz import InferenceData
from typing_extensions import Literal, Protocol
from xarray import Dataset
from pymc3.backends.base import MultiTrace
from pymc3.distributions.distribution import (
_compile_theano_function,
_DrawValuesContext,
_DrawValuesContextBlocker,
is_fast_drawable,
vectorized_ppc,
)
from pymc3.exceptions import IncorrectArgumentsError
from pymc3.model import (
Model,
MultiObservedRV,
ObservedRV,
get_named_nodes_and_relations,
modelcontext,
)
from pymc3.util import chains_and_samples, dataset_to_point_list, get_var_name
from pymc3.vartypes import theano_constant
# Failing tests:
# test_mixture_random_shape::test_mixture_random_shape
#
PosteriorPredictiveTrace = Dict[str, np.ndarray]
Point = Dict[str, np.ndarray]
class HasName(Protocol):
name: str
if TYPE_CHECKING:
_TraceDictParent = UserDict[str, np.ndarray]
else:
_TraceDictParent = UserDict
class _TraceDict(_TraceDictParent):
"""This class extends the standard trace-based representation
of traces by adding some helpful attributes used in posterior predictive
sampling.
Attributes
~~~~~~~~~~
varnames: list of strings"""
varnames: List[str]
_len: int
data: Dict[str, np.ndarray]
def __init__(
self,
point_list: Optional[List[Dict[str, np.ndarray]]] = None,
multi_trace: Optional[MultiTrace] = None,
dict: Optional[Dict[str, np.ndarray]] = None,
):
""""""
if multi_trace:
assert point_list is None and dict is None
self.data = {} # Dict[str, np.ndarray]
self._len = sum(len(multi_trace._straces[chain]) for chain in multi_trace.chains)
self.varnames = multi_trace.varnames
for vn in multi_trace.varnames:
self.data[vn] = multi_trace.get_values(vn)
if point_list is not None:
assert multi_trace is None and dict is None
self.varnames = varnames = list(point_list[0].keys())
rep_values = [point_list[0][varname] for varname in varnames]
# translate the point list.
self._len = num_points = len(point_list)
def arr_for(val):
if np.isscalar(val):
return np.ndarray(shape=(num_points,))
elif isinstance(val, np.ndarray):
shp = (num_points,) + val.shape
return np.ndarray(shape=shp)
else:
raise TypeError(
"Illegal object %s of type %s as value of variable in point list."
% (val, type(val))
)
self.data = {name: arr_for(val) for name, val in zip(varnames, rep_values)}
for i, point in enumerate(point_list):
for var, value in point.items():
self.data[var][i] = value
if dict is not None:
assert point_list is None and multi_trace is None
self.data = dict
self.varnames = list(dict.keys())
self._len = dict[self.varnames[0]].shape[0]
assert self.varnames is not None and self._len is not None and self.data is not None
def __len__(self) -> int:
return self._len
def _extract_slice(self, slc: slice) -> "_TraceDict":
sliced_dict: Dict[str, np.ndarray] = {}
def apply_slice(arr: np.ndarray) -> np.ndarray:
if len(arr.shape) == 1:
return arr[slc]
else:
return arr[slc, :]
for vn, arr in self.data.items():
sliced_dict[vn] = apply_slice(arr)
return _TraceDict(dict=sliced_dict)
@overload
def __getitem__(self, item: Union[str, HasName]) -> np.ndarray:
...
@overload
def __getitem__(self, item: Union[slice, int]) -> "_TraceDict":
...
def __getitem__(self, item):
if isinstance(item, str):
return super().__getitem__(item)
elif isinstance(item, slice):
return self._extract_slice(item)
elif isinstance(item, int):
return _TraceDict(dict={k: np.atleast_1d(v[item]) for k, v in self.data.items()})
elif hasattr(item, "name"):
return super().__getitem__(item.name)
else:
raise IndexError("Illegal index %s for _TraceDict" % str(item))
def fast_sample_posterior_predictive(
trace: Union[MultiTrace, Dataset, InferenceData, List[Dict[str, np.ndarray]]],
samples: Optional[int] = None,
model: Optional[Model] = None,
var_names: Optional[List[str]] = None,
keep_size: bool = False,
random_seed=None,
) -> Dict[str, np.ndarray]:
"""Generate posterior predictive samples from a model given a trace.
This is a vectorized alternative to the standard ``sample_posterior_predictive`` function.
It aims to be as compatible as possible with the original API, and is significantly
faster. Both posterior predictive sampling functions have some remaining issues, and
we encourage users to verify agreement across the results of both functions for the time
being.
Parameters
----------
trace: MultiTrace, xarray.Dataset, InferenceData, or List of points (dictionary)
Trace generated from MCMC sampling.
samples: int, optional
Number of posterior predictive samples to generate. Defaults to one posterior predictive
sample per posterior sample, that is, the number of draws times the number of chains. It
is not recommended to modify this value; when modified, some chains may not be represented
in the posterior predictive sample.
model: Model (optional if in `with` context)
Model used to generate `trace`
var_names: Iterable[str]
List of vars to sample.
keep_size: bool, optional
Force posterior predictive sample to have the same shape as posterior and sample stats
data: ``(nchains, ndraws, ...)``.
random_seed: int
Seed for the random number generator.
Returns
-------
samples: dict
Dictionary with the variable names as keys, and values numpy arrays containing
posterior predictive samples.
"""
### Implementation note: primarily this function canonicalizes the arguments:
### Establishing the model context, wrangling the number of samples,
### Canonicalizing the trace argument into a _TraceDict object and fitting it
### to the requested number of samples. Then it invokes posterior_predictive_draw_values
### *repeatedly*. It does this repeatedly, because the trace argument is set up to be
### the same as the number of samples. So if the number of samples requested is
### greater than the number of samples in the trace parameter, we sample repeatedly. This
### makes the shape issues just a little easier to deal with.
if isinstance(trace, InferenceData):
nchains, ndraws = chains_and_samples(trace)
trace = dataset_to_point_list(trace.posterior)
elif isinstance(trace, Dataset):
nchains, ndraws = chains_and_samples(trace)
trace = dataset_to_point_list(trace)
elif isinstance(trace, MultiTrace):
nchains = trace.nchains
ndraws = len(trace)
else:
if keep_size:
# arguably this should be just a warning.
raise IncorrectArgumentsError(
"For keep_size, cannot identify chains and length from %s.", trace
)
model = modelcontext(model)
assert model is not None
with model:
if keep_size and samples is not None:
raise IncorrectArgumentsError("Should not specify both keep_size and samples arguments")
if isinstance(trace, list) and all(isinstance(x, dict) for x in trace):
_trace = _TraceDict(point_list=trace)
elif isinstance(trace, MultiTrace):
_trace = _TraceDict(multi_trace=trace)
else:
raise TypeError(
"Unable to generate posterior predictive samples from argument of type %s"
% type(trace)
)
len_trace = len(_trace)
assert isinstance(_trace, _TraceDict)
_samples: List[int] = []
# temporary replacement for more complicated logic.
max_samples: int = len_trace
if samples is None or samples == max_samples:
_samples = [max_samples]
elif samples < max_samples:
warnings.warn(
"samples parameter is smaller than nchains times ndraws, some draws "
"and/or chains may not be represented in the returned posterior "
"predictive sample"
)
# if this is less than the number of samples in the trace, take a slice and
# work with that.
_trace = _trace[slice(samples)]
_samples = [samples]
elif samples > max_samples:
full, rem = divmod(samples, max_samples)
_samples = (full * [max_samples]) + ([rem] if rem != 0 else [])
else:
raise IncorrectArgumentsError(
"Unexpected combination of samples (%s) and max_samples (%d)"
% (samples, max_samples)
)
if var_names is None:
vars = model.observed_RVs
else:
vars = [model[x] for x in var_names]
if random_seed is not None:
np.random.seed(random_seed)
if TYPE_CHECKING:
_ETPParent = UserDict[str, np.ndarray] # this is only processed by mypy
else:
# this is not seen by mypy but will be executed at runtime.
_ETPParent = UserDict
class _ExtendableTrace(_ETPParent):
def extend_trace(self, trace: Dict[str, np.ndarray]) -> None:
for k, v in trace.items():
if k in self.data:
self.data[k] = np.concatenate((self.data[k], v))
else:
self.data[k] = v
ppc_trace = _ExtendableTrace()
for s in _samples:
strace = _trace if s == len_trace else _trace[slice(0, s)]
try:
values = posterior_predictive_draw_values(cast(List[Any], vars), strace, s)
new_trace: Dict[str, np.ndarray] = {k.name: v for (k, v) in zip(vars, values)}
ppc_trace.extend_trace(new_trace)
except KeyboardInterrupt:
pass
if keep_size:
return {
k: ary.reshape((nchains, ndraws, *ary.shape[1:])) for k, ary in ppc_trace.items()
}
# this gets us a Dict[str, np.ndarray] instead of my wrapped equiv.
return ppc_trace.data
def posterior_predictive_draw_values(
vars: List[Any], trace: _TraceDict, samples: int
) -> List[np.ndarray]:
with _PosteriorPredictiveSampler(vars, trace, samples, None) as sampler:
return sampler.draw_values()
class _PosteriorPredictiveSampler(AbstractContextManager):
"""The process of posterior predictive sampling is quite complicated so this provides a central data store."""
# inputs
vars: List[Any]
trace: _TraceDict
samples: int
size: Optional[int] # not supported!
# other slots
logger: logging.Logger
# for the search
evaluated: Dict[int, np.ndarray]
symbolic_params: List[Tuple[int, Any]]
# set by make_graph...
leaf_nodes: Dict[str, Any]
named_nodes_parents: Dict[str, Any]
named_nodes_children: Dict[str, Any]
_tok: contextvars.Token
def __init__(self, vars, trace: _TraceDict, samples, model: Optional[Model], size=None):
if size is not None:
raise NotImplementedError(
"sample_posterior_predictive does not support the size argument at this time."
)
assert vars is not None
self.vars = vars
self.trace = trace
self.samples = samples
self.size = size
self.logger = logging.getLogger("posterior_predictive")
def __enter__(self) -> "_PosteriorPredictiveSampler":
self._tok = vectorized_ppc.set(posterior_predictive_draw_values)
return self
def __exit__(self, exc_type, exc_val, exc_tb) -> Literal[False]:
vectorized_ppc.reset(self._tok)
return False
def draw_values(self) -> List[np.ndarray]:
vars = self.vars
trace = self.trace
samples = self.samples
# size = self.size
params = dict(enumerate(vars))
with _DrawValuesContext() as context:
self.init()
self.make_graph()
drawn = context.drawn_vars
# Init givens and the stack of nodes to try to `_draw_value` from
givens = {
p.name: (p, v)
for (p, samples), v in drawn.items()
if getattr(p, "name", None) is not None
}
stack = list(self.leaf_nodes.values()) # A queue would be more appropriate
while stack:
next_ = stack.pop(0)
if (next_, samples) in drawn:
# If the node already has a givens value, skip it
continue
elif isinstance(next_, (theano_constant, tt.sharedvar.SharedVariable)):
# If the node is a theano.tensor.TensorConstant or a
# theano.tensor.sharedvar.SharedVariable, its value will be
# available automatically in _compile_theano_function so
# we can skip it. Furthermore, if this node was treated as a
# TensorVariable that should be compiled by theano in
# _compile_theano_function, it would raise a `TypeError:
# ('Constants not allowed in param list', ...)` for
# TensorConstant, and a `TypeError: Cannot use a shared
# variable (...) as explicit input` for SharedVariable.
# ObservedRV and MultiObservedRV instances are ViewOPs
# of TensorConstants or SharedVariables, we must add them
# to the stack or risk evaluating deterministics with the
# wrong values (issue #3354)
stack.extend(
[
node
for node in self.named_nodes_parents[next_]
if isinstance(node, (ObservedRV, MultiObservedRV))
and (node, samples) not in drawn
]
)
continue
else:
# If the node does not have a givens value, try to draw it.
# The named node's children givens values must also be taken
# into account.
children = self.named_nodes_children[next_]
temp_givens = [givens[k] for k in givens if k in children]
try:
# This may fail for autotransformed RVs, which don't
# have the random method
value = self.draw_value(next_, trace=trace, givens=temp_givens)
assert isinstance(value, np.ndarray)
givens[next_.name] = (next_, value)
drawn[(next_, samples)] = value
except theano.gof.fg.MissingInputError:
# The node failed, so we must add the node's parents to
# the stack of nodes to try to draw from. We exclude the
# nodes in the `params` list.
stack.extend(
[
node
for node in self.named_nodes_parents[next_]
if node is not None and (node, samples) not in drawn
]
)
# the below makes sure the graph is evaluated in order
# test_distributions_random::TestDrawValues::test_draw_order fails without it
# The remaining params that must be drawn are all hashable
to_eval: Set[int] = set()
missing_inputs: Set[int] = {j for j, p in self.symbolic_params}
while to_eval or missing_inputs:
if to_eval == missing_inputs:
raise ValueError(
"Cannot resolve inputs for {}".format(
[get_var_name(trace.varnames[j]) for j in to_eval]
)
)
to_eval = set(missing_inputs)
missing_inputs = set()
for param_idx in to_eval:
param = vars[param_idx]
drawn = context.drawn_vars
if (param, samples) in drawn:
self.evaluated[param_idx] = drawn[(param, samples)]
else:
try:
if param in self.named_nodes_children:
for node in self.named_nodes_children[param]:
if node.name not in givens and (node, samples) in drawn:
givens[node.name] = (
node,
drawn[(node, samples)],
)
value = self.draw_value(param, trace=self.trace, givens=givens.values())
assert isinstance(value, np.ndarray)
self.evaluated[param_idx] = drawn[(param, samples)] = value
givens[param.name] = (param, value)
except theano.gof.fg.MissingInputError:
missing_inputs.add(param_idx)
return [self.evaluated[j] for j in params]
def init(self) -> None:
"""This method carries out the initialization phase of sampling
from the posterior predictive distribution. Notably it initializes the
``_DrawValuesContext`` bookkeeping object and evaluates the "fast drawable"
parts of the model."""
vars: List[Any] = self.vars
trace: _TraceDict = self.trace
samples: int = self.samples
leaf_nodes: Dict[str, Any]
named_nodes_parents: Dict[str, Any]
named_nodes_children: Dict[str, Any]
# initialization phase
context = _DrawValuesContext.get_context()
assert isinstance(context, _DrawValuesContext)
with context:
drawn = context.drawn_vars
evaluated: Dict[int, Any] = {}
symbolic_params = []
for i, var in enumerate(vars):
if is_fast_drawable(var):
evaluated[i] = self.draw_value(var)
continue
name = getattr(var, "name", None)
if (var, samples) in drawn:
evaluated[i] = drawn[(var, samples)]
# We filter out Deterministics by checking for `model` attribute
elif name is not None and hasattr(var, "model") and name in trace.varnames:
# param.name is in the trace. Record it as drawn and evaluated
drawn[(var, samples)] = evaluated[i] = trace[cast(str, name)]
else:
# param still needs to be drawn
symbolic_params.append((i, var))
self.evaluated = evaluated
self.symbolic_params = symbolic_params
def make_graph(self) -> None:
# Distribution parameters may be nodes which have named node-inputs
# specified in the point. Need to find the node-inputs, their
# parents and children to replace them.
symbolic_params = self.symbolic_params
self.leaf_nodes = {}
self.named_nodes_parents = {}
self.named_nodes_children = {}
for _, param in symbolic_params:
if hasattr(param, "name"):
# Get the named nodes under the `param` node
nn, nnp, nnc = get_named_nodes_and_relations(param)
self.leaf_nodes.update(nn)
# Update the discovered parental relationships
for k in nnp.keys():
if k not in self.named_nodes_parents.keys():
self.named_nodes_parents[k] = nnp[k]
else:
self.named_nodes_parents[k].update(nnp[k])
# Update the discovered child relationships
for k in nnc.keys():
if k not in self.named_nodes_children.keys():
self.named_nodes_children[k] = nnc[k]
else:
self.named_nodes_children[k].update(nnc[k])
def draw_value(self, param, trace: Optional[_TraceDict] = None, givens=None):
"""Draw a set of random values from a distribution or return a constant.
Parameters
----------
param: number, array like, theano variable or pymc3 random variable
The value or distribution. Constants or shared variables
will be converted to an array and returned. Theano variables
are evaluated. If `param` is a pymc3 random variable, draw
values from it and return that (as ``np.ndarray``), unless a
value is specified in the ``trace``.
trace: pm.MultiTrace, optional
A dictionary from pymc3 variable names to samples of their values
used to provide context for evaluating ``param``.
givens: dict, optional
A dictionary from theano variables to their values. These values
are used to evaluate ``param`` if it is a theano variable.
"""
samples = self.samples
def random_sample(
meth: Callable[..., np.ndarray],
param,
point: _TraceDict,
size: int,
shape: Tuple[int, ...],
) -> np.ndarray:
val = meth(point=point, size=size)
try:
assert val.shape == (size,) + shape, (
"Sampling from random of %s yields wrong shape" % param
)
# error-quashing here is *extremely* ugly, but it seems to be what the logic in DensityDist wants.
except AssertionError as e:
if (
hasattr(param, "distribution")
and hasattr(param.distribution, "wrap_random_with_dist_shape")
and not param.distribution.wrap_random_with_dist_shape
):
pass
else:
raise e
return val
if isinstance(param, (numbers.Number, np.ndarray)):
return param
elif isinstance(param, theano_constant):
return param.value
elif isinstance(param, tt.sharedvar.SharedVariable):
return param.get_value()
elif isinstance(param, (tt.TensorVariable, MultiObservedRV)):
if hasattr(param, "model") and trace and param.name in trace.varnames:
return trace[param.name]
elif hasattr(param, "random") and param.random is not None:
model = modelcontext(None)
assert isinstance(model, Model)
shape: Tuple[int, ...] = tuple(_param_shape(param, model))
return random_sample(param.random, param, point=trace, size=samples, shape=shape)
elif (
hasattr(param, "distribution")
and hasattr(param.distribution, "random")
and param.distribution.random is not None
):
if hasattr(param, "observations"):
# shape inspection for ObservedRV
dist_tmp = param.distribution
try:
distshape: Tuple[int, ...] = tuple(param.observations.shape.eval())
except AttributeError:
distshape = tuple(param.observations.shape)
dist_tmp.shape = distshape
try:
return random_sample(
dist_tmp.random,
param,
point=trace,
size=samples,
shape=distshape,
)
except (ValueError, TypeError):
# reset shape to account for shape changes
# with theano.shared inputs
dist_tmp.shape = ()
# We want to draw values to infer the dist_shape,
# we don't want to store these drawn values to the context
with _DrawValuesContextBlocker():
point = trace[0] if trace else None
temp_val = np.atleast_1d(dist_tmp.random(point=point, size=None))
# if hasattr(param, 'name') and param.name == 'obs':
# import pdb; pdb.set_trace()
# Sometimes point may change the size of val but not the
# distribution's shape
if point and samples is not None:
temp_size = np.atleast_1d(samples)
if all(temp_val.shape[: len(temp_size)] == temp_size):
dist_tmp.shape = tuple(temp_val.shape[len(temp_size) :])
else:
dist_tmp.shape = tuple(temp_val.shape)
# I am not sure why I need to do this, but I do in order to trim off a
# degenerate dimension [2019/09/05:rpg]
if dist_tmp.shape[0] == 1 and len(dist_tmp.shape) > 1:
dist_tmp.shape = dist_tmp.shape[1:]
return random_sample(
dist_tmp.random,
point=trace,
size=samples,
param=param,
shape=tuple(dist_tmp.shape),
)
else: # has a distribution, but no observations
distshape = tuple(param.distribution.shape)
return random_sample(
meth=param.distribution.random,
param=param,
point=trace,
size=samples,
shape=distshape,
)
# NOTE: I think the following is already vectorized.
else:
if givens:
variables, values = list(zip(*givens))
else:
variables = values = []
# We only truly care if the ancestors of param that were given
# value have the matching dshape and val.shape
param_ancestors = set(theano.gof.graph.ancestors([param], blockers=list(variables)))
inputs = [
(var, val) for var, val in zip(variables, values) if var in param_ancestors
]
if inputs:
input_vars, input_vals = list(zip(*inputs))
else:
input_vars = []
input_vals = []
func = _compile_theano_function(param, input_vars)
if not input_vars:
assert input_vals == [] # AFAICT if there are now vars, there can't be vals
output = func(*input_vals)
if hasattr(output, "shape"):
val = np.repeat(np.expand_dims(output, 0), samples, axis=0)
else:
val = np.full(samples, output)
else:
val = func(*input_vals)
# np.ndarray([func(*input_vals) for inp in zip(*input_vals)])
return val
raise ValueError("Unexpected type in draw_value: %s" % type(param))
def _param_shape(var_desig, model: Model) -> Tuple[int, ...]:
if isinstance(var_desig, str):
v = model[var_desig]
else:
v = var_desig
if hasattr(v, "observations"):
try:
# To get shape of _observed_ data container `pm.Data`
# (wrapper for theano.SharedVariable) we evaluate it.
shape = tuple(v.observations.shape.eval())
except AttributeError:
shape = v.observations.shape
elif hasattr(v, "dshape"):
shape = v.dshape
else:
shape = v.tag.test_value.shape
if shape == (1,):
shape = tuple()
return shape