forked from pymc-devs/pymc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtable_of_contents_examples.js
60 lines (60 loc) · 3.24 KB
/
table_of_contents_examples.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Gallery.contents = {
"BEST": "Case Studies",
"LKJ": "Case Studies",
"stochastic_volatility": "Case Studies",
"rugby_analytics": "Case Studies",
"multilevel_modeling": "Case Studies",
"putting_workflow": "Case Studies",
"Diagnosing_biased_Inference_with_Divergences": "Diagnostics and Model Criticism",
"model_comparison": "Diagnostics and Model Criticism",
"posterior_predictive": "Diagnostics and Model Criticism",
"Bayes_factor": "Diagnostics and Model Criticism",
"GLM": "(Generalized) Linear and Hierarchical Linear Models",
"GLM-linear": "(Generalized) Linear and Hierarchical Linear Models",
"GLM-logistic": "(Generalized) Linear and Hierarchical Linear Models",
"GLM-hierarchical-binominal-model": "(Generalized) Linear and Hierarchical Linear Models",
"GLM-hierarchical": "(Generalized) Linear and Hierarchical Linear Models",
"hierarchical_partial_pooling": "(Generalized) Linear and Hierarchical Linear Models",
"GLM-model-selection": "(Generalized) Linear and Hierarchical Linear Models",
"GLM-negative-binomial-regression": "(Generalized) Linear and Hierarchical Linear Models",
"GLM-poisson-regression": "(Generalized) Linear and Hierarchical Linear Models",
"GLM-robust-with-outlier-detection": "(Generalized) Linear and Hierarchical Linear Models",
"GLM-robust": "(Generalized) Linear and Hierarchical Linear Models",
"GLM-rolling-regression": "(Generalized) Linear and Hierarchical Linear Models",
"GLM-hierarchical-advi-minibatch": "(Generalized) Linear and Hierarchical Linear Models",
"GP-Kron": "Gaussian Processes",
"GP-Latent": "Gaussian Processes",
"GP-Marginal": "Gaussian Processes",
"GP-MaunaLoa": "Gaussian Processes",
"GP-MaunaLoa2": "Gaussian Processes",
"GP-MeansAndCovs": "Gaussian Processes",
"GP-SparseApprox": "Gaussian Processes",
"GP-TProcess": "Gaussian Processes",
"GP-smoothing": "Gaussian Processes",
"gaussian_process": "Gaussian Processes",
"dependent_density_regression": "Mixture Models",
"dp_mix": "Mixture Models",
"gaussian-mixture-model-advi": "Mixture Models",
"gaussian_mixture_model": "Mixture Models",
"marginalized_gaussian_mixture_model": "Mixture Models",
"SMC2_gaussians": "Simulation-based Inference",
"SMC-ABC_Lotka-Volterra_example": "Simulation-based Inference",
"bayes_param_survival_pymc3": "Survival Analysis",
"censored_data": "Survival Analysis",
"survival_analysis": "Survival Analysis",
"weibull_aft": "Survival Analysis",
"cox_model": "Survival Analysis",
"MvGaussianRandomWalk_demo": "Time Series",
"AR": "Time Series",
"Euler-Maruyama_and_SDEs": "Time Series",
"bayesian_neural_network_advi": "Variational Inference",
"convolutional_vae_keras_advi": "Variational Inference",
"empirical-approx-overview": "Variational Inference",
"lda-advi-aevb": "Variational Inference",
"normalizing_flows_overview": "Variational Inference",
"gaussian-mixture-model-advi": "Variational Inference",
"GLM-hierarchical-advi-minibatch": "Variational Inference",
"ODE_with_manual_gradients": "Inference in ODE models",
"ODE_API_introduction": "Inference in ODE models",
"ODE_API_shapes_and_benchmarking": "Inference in ODE models"
}