-
Notifications
You must be signed in to change notification settings - Fork 288
/
Copy patheval_zero_scrolls.py
172 lines (152 loc) · 5.39 KB
/
eval_zero_scrolls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import argparse
import json
import os
import shutil
from collections import defaultdict
import datasets
from huggingface_hub import hf_hub_download
from tqdm import tqdm
from utils import load_model_and_tokenizer, query_llm
parser = argparse.ArgumentParser(description="compress any prompt.")
parser.add_argument(
"--model_name_or_path", help="LLM used to answer", default="gpt-3.5-turbo-0613"
)
parser.add_argument("--n_max_token", type=int, default=8100)
# parser.add_argument('--n_max_token_ans', type=int, default=400, help='token num in answer, following llmlingua')
parser.add_argument(
"--load_prompt_from",
help="where to load compressed prompt",
default="results/zero_scrolls/origin/zero_scrolls_validation.json",
)
parser.add_argument("--load_key", default="prompt", type=str)
parser.add_argument(
"--save_path",
help="path to save results",
default="results/zero_scrolls/origin/gpt35_chat_16k_answer/answer_zero_scrolls_validation.json",
)
args = parser.parse_args()
os.makedirs(os.path.dirname(args.save_path), exist_ok=True)
save_path2 = os.path.join(
os.path.dirname(args.save_path),
os.path.basename(args.save_path).replace("answer", "answer2"),
)
def eval(predict_path: str):
def download_metric():
zero_scrolls_metric_path = hf_hub_download(
repo_id="tau/zero_scrolls",
repo_type="dataset",
filename="metrics/zero_scrolls.py",
)
updated_zero_scrolls_metric_path = (
os.path.dirname(zero_scrolls_metric_path)
+ os.path.basename(zero_scrolls_metric_path).replace(".", "_")
+ ".py"
)
shutil.copy(zero_scrolls_metric_path, updated_zero_scrolls_metric_path)
return updated_zero_scrolls_metric_path
zero_scrolls_metric_path = download_metric()
preds = json.load(open(predict_path))
preds_g, refers_g = defaultdict(list), defaultdict(list)
for v in preds.values():
task, refer, pred = [v[k] for k in ["task", "reference", "pred"]]
# if task == "narrative_qa":
pred = (
pred.split("\n\nQuestion:", 1)[0]
.split("\n\nExplanation:", 1)[0]
.replace("<|im_end|>", "")
.replace("\end{document}", "")
.strip()
)
# .split("\n\nExplanation:", 1)[0]
if task == "space_digest":
if pred.startswith("0.") and "%" not in pred[:4]:
pred = "{:.2f}%".format(float(pred[:4]) * 100)
else:
pred = pred[:5].strip().replace("%", "") + "%"
preds_g[task].append(pred)
refers_g[task].append([refer])
zero_scrolls = []
score_dict = {}
OUT_TASKS = [
"gov_report",
"summ_screen_fd",
"qmsum",
"squality",
"quality",
"narrative_qa",
"qasper",
"musique",
"space_digest",
"book_sum_sort",
]
for task in OUT_TASKS:
if task not in preds_g:
zero_scrolls.append(0)
continue
p, r = preds_g[task], refers_g[task]
zero_scrolls_metric = datasets.load_metric(zero_scrolls_metric_path, task)
results = zero_scrolls_metric.compute(predictions=p, references=r)
print(task, len(p), results)
zero_scrolls.append(results["zero_scrolls_score"])
score_dict[task] = {
"zero_scrolls_score": results["zero_scrolls_score"],
"length": len(p),
}
print(",".join([f"{ii:.2f}" for ii in zero_scrolls]))
score_avg = sum(zero_scrolls) / len(zero_scrolls)
score_dict["avg"] = score_avg
return score_dict
def predict():
model, tokenizer = load_model_and_tokenizer(args.model_name_or_path)
dataset = json.load(open(args.load_prompt_from))
if isinstance(dataset, dict):
dataset = dataset.values()
res = {}
res2 = {}
if os.path.exists(args.save_path):
res = json.load(open(args.save_path))
if os.path.exists(save_path2):
res2 = json.load(open(save_path2))
for sample in tqdm(dataset):
idx = int(sample["idx"])
if idx in res or str(idx) in res:
print(f"{idx} processed")
continue
prompt = sample[args.load_key]
max_gen = sample["n_max_token_ans"]
token_ids = tokenizer.encode(prompt)
if len(token_ids) > (args.n_max_token - max_gen):
half = int((args.n_max_token - max_gen) / 2) - 1
prompt = tokenizer.decode(token_ids[:half]) + tokenizer.decode(
token_ids[-half:]
)
pred = query_llm(prompt, model, args.model_name_or_path, max_gen)
res[idx] = {
"pred": pred,
"answer": sample["answer"],
"model_name": args.model_name_or_path,
"task": sample["task"],
"idx": idx,
}
json.dump(res, open(args.save_path, "w"), indent=4)
res2[f"{idx},{sample['task']}"] = {
"idx": idx,
"task": sample["task"],
"pred": pred,
"reference": sample["answer"],
}
json.dump(res2, open(save_path2, "w"), indent=4)
predict()
score_dict = eval(save_path2)
json.dump(
score_dict,
open(
os.path.join(
os.path.dirname(args.save_path),
os.path.basename(args.save_path).replace("answer", "metrics"),
),
"w",
),
)