-
Notifications
You must be signed in to change notification settings - Fork 397
/
Copy pathfinetune_hf_trainer_docvqa.py
539 lines (467 loc) · 18.2 KB
/
finetune_hf_trainer_docvqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
"""
example for finetuning Phi-3-V on the DocVQA dataset using the Hugging Face Trainer API
Modified from Idefics-2 finetuning notebook:
https://colab.research.google.com/drive/1rm3AGquGEYXfeeizE40bbDtcWh5S4Nlq?usp=sharing
Install dependencies:
pip install transformers==4.38.1 \
datasets \
accelerate==0.30.1 \
peft \
Levenshtein \
deepspeed==0.13.1
minimal run:
torchrun --nproc_per_node=4 finetune_hf_trainer_docvqa.py
"""
import argparse
import json
import os
import random
from pathlib import Path
import Levenshtein
import torch
from accelerate import Accelerator
from accelerate.utils import gather_object
from datasets import load_dataset
from peft import LoraConfig
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
BitsAndBytesConfig,
Trainer,
TrainingArguments,
)
# suggested deepspeed config
DS_CONFIG_DICT = {
'zero_optimization': {
'stage': 2,
'allgather_partitions': True,
'allgather_bucket_size': 5e8,
'overlap_comm': True,
'reduce_scatter': True,
'reduce_bucket_size': 5e8,
'contiguous_gradients': True,
'round_robin_gradients': True,
},
'fp16': {
'enabled': 'auto',
'loss_scale': 0,
'loss_scale_window': 1000,
'initial_scale_power': 16,
'hysteresis': 2,
'min_loss_scale': 1,
},
'bf16': {'enabled': 'auto'},
'train_micro_batch_size_per_gpu': 'auto',
'train_batch_size': 'auto',
'gradient_accumulation_steps': 'auto',
'gradient_clipping': 'auto',
}
def create_dataset(use_full_train=False):
"""
DocVQA dataset from the Hugging Face Hub
"""
if use_full_train:
train_dataset = load_dataset('HuggingFaceM4/the_cauldron', 'docvqa', split='train')
else:
# 1000 mini-train split
train_dataset = load_dataset('nielsr/docvqa_1200_examples', split='train')
train_dataset = train_dataset.remove_columns(['id', 'words', 'bounding_boxes', 'answer'])
# 200 mini-test split
eval_dataset = load_dataset('nielsr/docvqa_1200_examples', split='test')
eval_dataset = eval_dataset.remove_columns(['id', 'words', 'bounding_boxes', 'answer'])
return train_dataset, eval_dataset
def create_lora_config(rank, alpha_to_rank_ratio=2.0, dropout=0.0, freeze_vision_model=False):
linear_modules = [
# Phi language modules
'qkv_proj', # attention
'o_proj',
'down_proj', # MLP
'gate_up_proj',
'lm_head',
]
if not freeze_vision_model:
vision_linear_modules = [
# CLIP modules
'q_proj', # attention
'k_proj',
'v_proj',
'out_proj',
'fc1', # MLP
'fc2',
# image projection
'img_projection.0',
'img_projection.2',
]
linear_modules.extend(vision_linear_modules)
lora_config = LoraConfig(
r=rank,
lora_alpha=round(rank * alpha_to_rank_ratio),
lora_dropout=dropout,
target_modules=linear_modules,
init_lora_weights='gaussian',
)
return lora_config
def create_model(model_name_or_path, use_flash_attention=False, use_qlora=False):
bnb_config = (
BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_compute_dtype=torch.bfloat16 if use_flash_attention else torch.float16,
)
if use_qlora
else None
)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
# Phi-3-V is originally trained in bf16 + flash attn
# For fp16 mixed precision training, load in f32 to avoid hf accelerate error
torch_dtype=torch.bfloat16 if use_flash_attention else torch.float32,
trust_remote_code=True,
_attn_implementation='flash_attention_2' if use_flash_attention else 'eager',
quantization_config=bnb_config,
)
return model
class MiniDocVQADataCollator:
def __init__(self, processor):
self.processor = processor
def __call__(self, examples):
assert len(examples) == 1, 'Phi-3-V only supports batch_size == 1'
example = examples[0]
image = example['image']
question = example['query']['en']
answer = random.choice(example['answers'])
prompt_message = {
'role': 'user',
'content': f'<|image_1|>\n{question}\nAnswer briefly.',
}
prompt = self.processor.tokenizer.apply_chat_template(
[prompt_message], tokenize=False, add_generation_prompt=True
)
answer = f'{answer}<|end|>\n<|endoftext|>'
# mask questions for labels
batch = self.processor(prompt, [image], return_tensors='pt')
prompt_input_ids = batch['input_ids']
# Do not add bos token to answer
answer_input_ids = self.processor.tokenizer(
answer, add_special_tokens=False, return_tensors='pt'
)['input_ids']
input_ids = torch.cat([prompt_input_ids, answer_input_ids], dim=1)
ignore_index = -100
labels = torch.cat(
[
torch.tensor([ignore_index] * len(prompt_input_ids[0])).unsqueeze(0),
answer_input_ids,
],
dim=1,
)
batch['input_ids'] = input_ids
del batch['attention_mask']
batch['labels'] = labels
return batch
class DocVQADataCollator:
def __init__(self, processor):
self.processor = processor
def __call__(self, examples):
assert len(examples) == 1, 'Phi-3-V only supports batch_size == 1'
example = examples[0]
image = example['images'][0]
text_dict = random.choice(example['texts'])
question = text_dict['user']
answer = text_dict['assistant']
prompt_message = {
'role': 'user',
'content': f'<|image_1|>\n{question}',
}
prompt = self.processor.tokenizer.apply_chat_template(
[prompt_message], tokenize=False, add_generation_prompt=True
)
answer = f'{answer}<|end|>\n<|endoftext|>'
# mask questions for labels
batch = self.processor(prompt, [image], return_tensors='pt')
prompt_input_ids = batch['input_ids']
# Do not add bos token to answer
answer_input_ids = self.processor.tokenizer(
answer, add_special_tokens=False, return_tensors='pt'
)['input_ids']
input_ids = torch.cat([prompt_input_ids, answer_input_ids], dim=1)
ignore_index = -100
labels = torch.cat(
[
torch.tensor([ignore_index] * len(prompt_input_ids[0])).unsqueeze(0),
answer_input_ids,
],
dim=1,
)
batch['input_ids'] = input_ids
del batch['attention_mask']
batch['labels'] = labels
return batch
def normalized_levenshtein(s1, s2):
len_s1, len_s2 = len(s1), len(s2)
distance = Levenshtein.distance(s1, s2)
return distance / max(len_s1, len_s2)
def similarity_score(a_ij, o_q_i, tau=0.5):
nl = normalized_levenshtein(a_ij, o_q_i)
return 1 - nl if nl < tau else 0
def average_normalized_levenshtein_similarity(ground_truth, predicted_answers):
assert len(ground_truth) == len(
predicted_answers
), 'Length of ground_truth and predicted_answers must match.'
N = len(ground_truth)
total_score = 0
for i in range(N):
a_i = ground_truth[i]
o_q_i = predicted_answers[i]
if o_q_i == '':
print('Warning: Skipped an empty prediction.')
max_score = 0
else:
max_score = max(similarity_score(a_ij, o_q_i) for a_ij in a_i)
total_score += max_score
return total_score / N
@torch.no_grad()
def evaluate(model, processor, eval_dataset, save_path=None, disable_tqdm=False):
rank = int(os.environ.get('RANK', 0))
local_rank = int(os.environ.get('LOCAL_RANK', 0))
world_size = int(os.environ.get('WORLD_SIZE', 1))
model.eval()
answers_unique = []
generated_texts_unique = []
eval_dataset_shard = eval_dataset.shard(num_shards=world_size, index=rank)
for i in tqdm(range(len(eval_dataset_shard)), disable=(rank != 0) or disable_tqdm):
# Phi-3-V currently only supports batch_size == 1
example = eval_dataset_shard[i]
answers_unique.append(example['answers'])
image = example['image']
question = example['query']['en']
prompt_message = {
'role': 'user',
'content': f'<|image_1|>\n{question}\nAnswer briefly.',
}
prompt = processor.tokenizer.apply_chat_template(
[prompt_message], tokenize=False, add_generation_prompt=True
)
inputs = processor(prompt, [image], return_tensors='pt').to(f'cuda:{local_rank}')
generated_ids = model.generate(
**inputs, eos_token_id=processor.tokenizer.eos_token_id, max_new_tokens=64
)
generated_texts = processor.batch_decode(
generated_ids[:, inputs['input_ids'].size(1) :],
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
generated_texts_unique.extend(generated_texts)
generated_texts_unique = [g.strip().strip('.') for g in generated_texts_unique]
# gather outputs from all ranks
answers_unique = gather_object(answers_unique)
generated_texts_unique = gather_object(generated_texts_unique)
if rank == 0:
anls = average_normalized_levenshtein_similarity(
ground_truth=answers_unique,
predicted_answers=generated_texts_unique,
)
if save_path:
with open(save_path, 'w') as f:
save_dict = {
'answers_unique': answers_unique,
'generated_texts_unique': generated_texts_unique,
'anls': anls,
}
json.dump(save_dict, f)
return anls
return None
def patch_clip_for_lora(model):
# remove unused parameters and then monkey patch
def get_img_features(self, img_embeds):
clip_vision_model = self.img_processor.vision_model
hidden_states = clip_vision_model.embeddings(img_embeds)
hidden_states = clip_vision_model.pre_layrnorm(hidden_states)
patch_feature = clip_vision_model.encoder(
inputs_embeds=hidden_states, output_hidden_states=True
).hidden_states[-1][:, 1:]
return patch_feature
image_embedder = model.model.vision_embed_tokens
layer_index = image_embedder.layer_idx
clip_layers = image_embedder.img_processor.vision_model.encoder.layers
if layer_index < 0:
layer_index = len(clip_layers) + layer_index
del clip_layers[layer_index + 1 :]
del image_embedder.img_processor.vision_model.post_layernorm
image_embedder.get_img_features = get_img_features.__get__(image_embedder)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--model_name_or_path',
type=str,
default='microsoft/Phi-3.5-vision-instruct',
help='Model name or path to load from',
)
parser.add_argument(
'--full_train', action='store_true', help='Use full training dataset (DocVQA)'
)
parser.add_argument('--use_flash_attention', action='store_true', help='Use Flash Attention')
parser.add_argument('--bf16', action='store_true', help='Use BF16')
parser.add_argument('--use_lora', action='store_true', help='Use LoRA')
parser.add_argument('--use_qlora', action='store_true', help='Use QLora')
parser.add_argument('--output_dir', type=str, default='./output/', help='Output directory')
parser.add_argument('--batch_size', type=int, default=16, help='Batch size')
parser.add_argument('--num_crops', type=int, default=16, help='Number of maximum image crops')
parser.add_argument(
'--num_train_epochs', type=int, default=1, help='Number of training epochs'
)
parser.add_argument('--learning_rate', type=float, default=4.0e-5, help='Learning rate')
parser.add_argument('--wd', type=float, default=0.01, help='Weight decay')
parser.add_argument('--no-tqdm', dest='tqdm', action='store_false', help='Disable tqdm')
parser.add_argument('--lora_rank', type=int, default=64, help='LoRA rank')
parser.add_argument(
'--lora_alpha_ratio', type=float, default=2, help='LoRA alpha to rank ratio'
)
parser.add_argument('--lora_dropout', type=float, default=0.0, help='LoRA dropout')
parser.add_argument('--freeze_vision_model', action='store_true', help='Freeze vision model')
args = parser.parse_args()
assert args.num_crops <= 16, 'num_crops must be less than or equal to 16'
if args.use_qlora:
args.use_lora = True
accelerator = Accelerator()
with accelerator.local_main_process_first():
processor = AutoProcessor.from_pretrained(
args.model_name_or_path, trust_remote_code=True, num_crops=args.num_crops
)
model = create_model(
args.model_name_or_path,
use_flash_attention=args.use_flash_attention,
use_qlora=args.use_qlora,
)
train_dataset, eval_dataset = create_dataset(use_full_train=args.full_train)
num_gpus = accelerator.num_processes
print(f'training on {num_gpus} GPUs')
assert args.batch_size % num_gpus == 0, 'Batch size must be divisible by the number of GPUs'
gradient_accumulation_steps = args.batch_size // num_gpus
if args.bf16:
fp16 = False
bf16 = True
else:
fp16 = True
bf16 = False
# hard coded training args
training_args = TrainingArguments(
num_train_epochs=args.num_train_epochs,
per_device_train_batch_size=1, # NOTE currently only supports batch_size == 1
per_device_eval_batch_size=1,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={'use_reentrant': False}, # NOTE important for LoRA
gradient_accumulation_steps=gradient_accumulation_steps,
optim='adamw_torch',
adam_beta1=0.9,
adam_beta2=0.95,
adam_epsilon=1e-7,
learning_rate=args.learning_rate,
weight_decay=args.wd,
max_grad_norm=1.0,
lr_scheduler_type='linear',
warmup_steps=50,
logging_steps=10,
output_dir=args.output_dir,
save_strategy='no',
save_total_limit=10,
save_only_model=True,
bf16=bf16,
fp16=fp16,
remove_unused_columns=False,
report_to='none',
deepspeed=None if args.use_lora else DS_CONFIG_DICT,
disable_tqdm=not args.tqdm,
dataloader_num_workers=4,
dataloader_prefetch_factor=2,
ddp_find_unused_parameters=False,
)
if args.full_train:
data_collator = DocVQADataCollator(processor)
else:
data_collator = MiniDocVQADataCollator(processor)
# eval before fine-tuning
out_path = Path(training_args.output_dir)
out_path.mkdir(parents=True, exist_ok=True)
if not args.use_qlora:
local_rank = int(os.environ.get('LOCAL_RANK', 0))
model = model.to(f'cuda:{local_rank}')
anls = evaluate(
model,
processor,
eval_dataset,
save_path=out_path / 'eval_before.json',
disable_tqdm=not args.tqdm,
)
if accelerator.is_main_process:
print(f'Average normalized Levenshtein similarity before finetuning: {anls}')
if args.use_lora:
patch_clip_for_lora(model)
lora_config = create_lora_config(
rank=args.lora_rank,
alpha_to_rank_ratio=args.lora_alpha_ratio,
dropout=args.lora_dropout,
freeze_vision_model=args.freeze_vision_model,
)
model.add_adapter(lora_config)
model.enable_adapters()
if args.freeze_vision_model:
model.model.vision_embed_tokens.requires_grad_(False)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
)
trainer.train()
trainer.save_model()
if accelerator.is_main_process:
processor.save_pretrained(training_args.output_dir)
accelerator.wait_for_everyone()
# eval after fine-tuning
if args.use_lora:
# first try to clear GPU memory
del model
del trainer
__import__('gc').collect()
torch.cuda.empty_cache()
# reload the model for inference
# this part also serves as an example of how to load a trained model
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
# Phi-3-V is originally trained in bf16 + flash attn
# For fp16 mixed precision training, load in f32 to avoid hf accelerate error
torch_dtype=torch.bfloat16 if args.use_flash_attention else torch.float32,
trust_remote_code=True,
_attn_implementation='flash_attention_2' if args.use_flash_attention else 'eager',
)
patch_clip_for_lora(model)
model.load_adapter(training_args.output_dir)
else:
# for full finetuning, GPU memory can't be cleared (likely caused by deepspeed
# https://github.com/microsoft/DeepSpeed/issues/3677)
# so we don't reload the model
model = accelerator.unwrap_model(model, keep_fp32_wrapper=not args.bf16)
# below is a sample code snippet to load fully-finetuned model
# model = AutoModelForCausalLM.from_pretrained(
# training_args.output_dir,
# # Phi-3-V is originally trained in bf16 + flash attn
# # For fp16 mixed precision training, load in f32 to avoid hf accelerate error
# torch_dtype=torch.bfloat16 if args.use_flash_attention else torch.float32,
# trust_remote_code=True,
# _attn_implementation='flash_attention_2' if args.use_flash_attention else 'eager',
# )
rank = int(os.environ.get('RANK', 0))
local_rank = int(os.environ.get('LOCAL_RANK', 0))
model = model.to(f'cuda:{local_rank}')
anls = evaluate(
model,
processor,
eval_dataset,
save_path=out_path / 'eval_after.json',
disable_tqdm=not args.tqdm,
)
if rank == 0:
print(f'Average normalized Levenshtein similarity after finetuning: {anls}')
if __name__ == '__main__':
main()