L'appel de fonction est apparu pour la première fois dans la famille Phi, et vous pouvez désormais l'utiliser avec Phi-4-mini.
Cet exemple illustre la simulation des résultats de la Premier League. L'objectif est que Phi-4-mini fournisse des informations sur les matchs en temps réel. Voici le code d'exemple :
import torch
import json
import random
import string
import re
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig,pipeline,AutoTokenizer
model_path = "Your Phi-4-mini location"
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="cuda",
attn_implementation="flash_attention_2",
torch_dtype="auto",
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Tools should be a list of functions stored in json format
tools = [
{
"name": "get_match_result",
"description": "get match result",
"parameters": {
"match": {
"description": "The name of the match",
"type": "str",
"default": "Arsenal vs ManCity"
}
}
},
]
# Function implementations
def get_match_result(match: str) -> str:
# This would be replaced by a weather API
match_data = {
"Arsenal vs ManCity": "1:1",
"Chelsea vs ManUnited": "0:2"
}
return match_data.get(match, "I don't know")
messages = [
{
"role": "system",
"content": "You are a helpful assistant",
"tools": json.dumps(tools), # pass the tools into system message using tools argument
},
{
"role": "user",
"content": "What is the result of Arsenal vs ManCity today?"
}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_dict=True, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
output = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(output[0][len(inputs["input_ids"][0]):]))
tokenizer.batch_decode(output)
response = tokenizer.decode(output[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)
tool_call_id = ''.join(random.choices(string.ascii_letters + string.digits, k=9))
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "id": tool_call_id, "function": response}]})
try :
tool_call = json.loads(response)[0]
except :
json_part = re.search(r'\[.*\]', response, re.DOTALL).group(0)
tool_call = json.loads(json_part)[0]
function_name = tool_call["name"]
arguments = tool_call["arguments"]
result = get_match_result(**arguments)
messages.append({"role": "tool", "tool_call_id": tool_call_id, "name": "get_match_result", "content": str(result)})
print(messages)
Avertissement :
Ce document a été traduit à l'aide du service de traduction IA Co-op Translator. Bien que nous fassions de notre mieux pour garantir l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction humaine professionnelle. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.