Skip to content

Latest commit

 

History

History
110 lines (81 loc) · 4.39 KB

File metadata and controls

110 lines (81 loc) · 4.39 KB

Вызов функций в Phi-4-mini

Вызов функций впервые появился в семействе Phi Family, и теперь вы можете использовать его через Phi-4-mini.

Этот пример демонстрирует симуляцию результатов Премьер-лиги. Цель заключается в том, чтобы Phi-4-mini предоставлял информацию о матчах в режиме реального времени. Ниже приведен пример кода:

import torch
import json
import random
import string
import re
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig,pipeline,AutoTokenizer

model_path = "Your Phi-4-mini location"

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="cuda",
    attn_implementation="flash_attention_2",
    torch_dtype="auto",
    trust_remote_code=True)

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

# Tools should be a list of functions stored in json format
tools = [
    {
        "name": "get_match_result",
        "description": "get match result",
        "parameters": {
            "match": {
                "description": "The name of the match",
                "type": "str",
                "default": "Arsenal vs ManCity"
            }
        }
    },
]

# Function implementations

def get_match_result(match: str) -> str:
    # This would be replaced by a weather API
    match_data = {
        "Arsenal vs ManCity": "1:1",
        "Chelsea vs ManUnited": "0:2"
    }
    return match_data.get(match, "I don't know")


messages = [
    {
        "role": "system",
        "content": "You are a helpful assistant",
        "tools": json.dumps(tools), # pass the tools into system message using tools argument
    },
    {
        "role": "user",
        "content": "What is the result of Arsenal vs ManCity today?"
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_dict=True, return_tensors="pt")

inputs = {k: v.to(model.device) for k, v in inputs.items()}
output = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(output[0][len(inputs["input_ids"][0]):]))

tokenizer.batch_decode(output)

response = tokenizer.decode(output[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)

tool_call_id = ''.join(random.choices(string.ascii_letters + string.digits, k=9))

messages.append({"role": "assistant", "tool_calls": [{"type": "function", "id": tool_call_id, "function": response}]})

try :
    tool_call = json.loads(response)[0]

except :
    json_part = re.search(r'\[.*\]', response, re.DOTALL).group(0)

    tool_call = json.loads(json_part)[0]


function_name = tool_call["name"]   

arguments = tool_call["arguments"]

result = get_match_result(**arguments) 

messages.append({"role": "tool", "tool_call_id": tool_call_id, "name": "get_match_result", "content": str(result)})

print(messages)

Отказ от ответственности:
Этот документ был переведен с использованием сервиса автоматического перевода Co-op Translator. Хотя мы стремимся к точности, пожалуйста, учитывайте, что автоматические переводы могут содержать ошибки или неточности. Оригинальный документ на его исходном языке следует считать авторитетным источником. Для получения критически важной информации рекомендуется профессиональный перевод человеком. Мы не несем ответственности за любые недоразумения или неверные интерпретации, возникающие в результате использования данного перевода.