-
Notifications
You must be signed in to change notification settings - Fork 361
/
Copy pathmodel-explorer.cpp
122 lines (106 loc) · 4.8 KB
/
model-explorer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
/**
* This sample application demonstrates how to use components of the experimental C++ API
* to query for model inputs/outputs and how to run inferrence on a model.
*
* This example is best run with one of the ResNet models (i.e. ResNet18) from the onnx model zoo at
* https://github.com/onnx/models
*
* Assumptions made in this example:
* 1) The onnx model has 1 input node and 1 output node
*
*
* In this example, we do the following:
* 1) read in an onnx model
* 2) print out some metadata information about inputs and outputs that the model expects
* 3) generate random data for an input tensor
* 4) pass tensor through the model and check the resulting tensor
*
*/
#include <algorithm> // std::generate
#include <assert.h>
#include <iostream>
#include <sstream>
#include <vector>
#include <experimental_onnxruntime_cxx_api.h>
// pretty prints a shape dimension vector
std::string print_shape(const std::vector<int64_t>& v) {
std::stringstream ss("");
for (size_t i = 0; i < v.size() - 1; i++)
ss << v[i] << "x";
ss << v[v.size() - 1];
return ss.str();
}
int calculate_product(const std::vector<int64_t>& v) {
int total = 1;
for (auto& i : v) total *= i;
return total;
}
using namespace std;
int main(int argc, char** argv) {
if (argc != 2) {
cout << "Usage: model-explorer.exe <onnx_model.onnx>" << endl;
return -1;
}
#ifdef _WIN32
std::string str = argv[1];
std::wstring wide_string = std::wstring(str.begin(), str.end());
std::basic_string<ORTCHAR_T> model_file = std::basic_string<ORTCHAR_T>(wide_string);
#else
std::string model_file = argv[1];
#endif
// onnxruntime setup
Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "example-model-explorer");
Ort::SessionOptions session_options;
//Appending OpenVINO Execution Provider API
#ifdef USE_OPENVINO
// Using OPENVINO backend
OrtOpenVINOProviderOptions options;
options.device_type = "CPU_FP32"; //Other options are: GPU_FP32, GPU_FP16, MYRIAD_FP16
std::cout << "OpenVINO device type is set to: " << options.device_type << std::endl;
session_options.AppendExecutionProvider_OpenVINO(options);
#endif
Ort::Experimental::Session session = Ort::Experimental::Session(env, model_file, session_options); // access experimental components via the Experimental namespace
// print name/shape of inputs
std::vector<std::string> input_names = session.GetInputNames();
std::vector<std::vector<int64_t> > input_shapes = session.GetInputShapes();
cout << "Input Node Name/Shape (" << input_names.size() << "):" << endl;
for (size_t i = 0; i < input_names.size(); i++) {
cout << "\t" << input_names[i] << " : " << print_shape(input_shapes[i]) << endl;
}
// print name/shape of outputs
std::vector<std::string> output_names = session.GetOutputNames();
std::vector<std::vector<int64_t> > output_shapes = session.GetOutputShapes();
cout << "Output Node Name/Shape (" << output_names.size() << "):" << endl;
for (size_t i = 0; i < output_names.size(); i++) {
cout << "\t" << output_names[i] << " : " << print_shape(output_shapes[i]) << endl;
}
// Assume model has 1 input node and 1 output node.
assert(input_names.size() == 1 && output_names.size() == 1);
// Create a single Ort tensor of random numbers
auto input_shape = input_shapes[0];
int total_number_elements = calculate_product(input_shape);
std::vector<float> input_tensor_values(total_number_elements);
std::generate(input_tensor_values.begin(), input_tensor_values.end(), [&] { return rand() % 255; }); // generate random numbers in the range [0, 255]
std::vector<Ort::Value> input_tensors;
input_tensors.push_back(Ort::Experimental::Value::CreateTensor<float>(input_tensor_values.data(), input_tensor_values.size(), input_shape));
// double-check the dimensions of the input tensor
assert(input_tensors[0].IsTensor() &&
input_tensors[0].GetTensorTypeAndShapeInfo().GetShape() == input_shape);
cout << "\ninput_tensor shape: " << print_shape(input_tensors[0].GetTensorTypeAndShapeInfo().GetShape()) << endl;
// pass data through model
cout << "Running model...";
try {
auto output_tensors = session.Run(session.GetInputNames(), input_tensors, session.GetOutputNames());
cout << "done" << endl;
// double-check the dimensions of the output tensors
// NOTE: the number of output tensors is equal to the number of output nodes specifed in the Run() call
assert(output_tensors.size() == session.GetOutputNames().size() &&
output_tensors[0].IsTensor());
cout << "output_tensor_shape: " << print_shape(output_tensors[0].GetTensorTypeAndShapeInfo().GetShape()) << endl;
} catch (const Ort::Exception& exception) {
cout << "ERROR running model inference: " << exception.what() << endl;
exit(-1);
}
}