-
Notifications
You must be signed in to change notification settings - Fork 3.1k
/
Copy pathutil.ts
490 lines (438 loc) · 16.7 KB
/
util.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
/* eslint-disable no-param-reassign */
export class MatMulUtil {
/**
* Calculate the expected shape when matrix multiplication
* @param a The shape of tensor A. Should be a tuple of 2 positive integers
* @param b The shape of tensor B. Should be a tuple of 2 positive integers
* @returns The expected shape of the result, or undefined if N/A
*/
static calcMatMulShape(a: [number, number], b: [number, number]): [number, number]|undefined {
return (a[1] !== b[0]) ? undefined : [a[0], b[1]];
}
}
export class BroadcastUtil {
/**
* Calculate the expected shape when broadcasting 2 tensors
* @param a The shape of tensor A. Should be an array of positive integers
* @param b The shape of tensor B. Should be an array of positive integers
* @param isMatMul Whether the operation is MatMul
* @returns The expected shape of the result, or undefined if N/A
*/
static calcShape(adims: readonly number[], bdims: readonly number[], isMatMul = false): readonly number[]|undefined {
const arank = adims.length;
const brank = bdims.length;
if (arank === 0) {
return bdims;
}
if (brank === 0) {
return adims;
}
const crank = Math.max(adims.length, bdims.length);
const cdims = new Array<number>(crank);
// calculate the last 2 dimension if it is MatMul
if (isMatMul) {
if (arank < 2 || brank < 2) {
return undefined;
}
const cShapeMatMul =
MatMulUtil.calcMatMulShape([adims[arank - 2], adims[arank - 1]], [bdims[brank - 2], bdims[brank - 1]]);
if (cShapeMatMul === undefined) {
return undefined;
}
[cdims[crank - 2], cdims[crank - 1]] = cShapeMatMul;
}
for (let i = isMatMul ? 3 : 1; i <= crank; i++) {
const aLen = arank - i < 0 ? 1 : adims[arank - i];
const bLen = brank - i < 0 ? 1 : bdims[brank - i];
if (aLen !== bLen && aLen > 1 && bLen > 1) {
return undefined;
}
const max = Math.max(aLen, bLen);
if (aLen && bLen) {
cdims[crank - i] = Math.max(aLen, bLen);
} else {
// when either aLen or bLen is 0, the other should be either 0 or 1, otherwise it is not broadcastable.
if (max > 1) {
return undefined;
}
cdims[crank - i] = 0;
}
}
return cdims;
}
/**
* Determine if a shape is unidirectional broadcastable to another shape
* @param shape The input shape
* @param finalShape The desired shape after broadcasting
*/
static isValidBroadcast(shape: readonly number[], finalShape: readonly number[]): boolean {
// align shape to the right
const inputRank = shape.length;
const finalRank = finalShape.length;
if (inputRank > finalRank) {
return false;
}
for (let i = 1; i <= inputRank; i++) {
if (shape[inputRank - i] !== 1 && shape[inputRank - i] !== finalShape[finalRank - i]) {
return false;
}
}
return true;
}
}
export class ShapeUtil {
/**
* calculate the size (number of elements)
*/
static size(dims: readonly number[]): number {
return ShapeUtil.getSizeFromDimensionRange(dims, 0, dims.length);
}
/**
* convert dims corresponding to type change to pack. ex. uint8 data to uint32
*/
static convertShape(dims: readonly number[], size = 4): readonly number[] {
const rank = dims.length;
if (rank === 0) {
return [];
}
const newDims = new Array(rank);
let i = rank - 1;
while (i >= 0) {
if (dims[i] % size === 0) {
newDims[i] = dims[i] / size;
break;
}
if (size % dims[i] !== 0) {
throw new Error('cannot convert shape');
}
newDims[i] = 1;
size /= dims[i];
i--;
}
for (i--; i >= 0; i--) {
newDims[i] = dims[i];
}
return newDims;
}
/**
* calculate the size (number of elements) from the given axis (inclusive)
*/
static sizeFromDimension(dims: readonly number[], axis: number): number {
if (axis < 0 || axis > dims.length) {
throw new Error(`invalid dimension of ${axis} for sizeFromDimension as Tensor has ${dims.length} dimensions.`);
}
return ShapeUtil.getSizeFromDimensionRange(dims, axis, dims.length);
}
/**
* calculate the size (number of elements) to the given axis (exclusive)
*/
static sizeToDimension(dims: readonly number[], axis: number): number {
if (axis < 0 || axis > dims.length) {
throw new Error(`invalid dimension of ${axis} for sizeToDimension as Tensor has ${dims.length} dimensions.`);
}
return ShapeUtil.getSizeFromDimensionRange(dims, 0, axis);
}
/**
* calculate the size (number of elements) from and to the given axis [start, end)
*/
static getSizeFromDimensionRange(dims: readonly number[], start: number, end: number): number {
let size = 1;
for (let i = start; i < end; i++) {
// safety check as this method is called by multiple other methods requiring size.
// size cannot be negative.
if (dims[i] < 0) {
throw new Error(
// eslint-disable-next-line max-len
'cannot get valid size from specified dimension range. Most likely the range contains negative values in them.');
}
size *= dims[i];
}
return size;
}
static computeStrides(dims: readonly number[]): readonly number[] {
const rank = dims.length;
if (rank === 0) {
return [];
} else if (rank === 1) {
return [1];
}
const strides = new Array(rank);
strides[rank - 1] = 1;
strides[rank - 2] = dims[rank - 1];
for (let i = rank - 3; i >= 0; --i) {
strides[i] = strides[i + 1] * dims[i + 1];
}
return strides;
}
/**
* normailze axis of range [-r, r) into [0, r).
*/
static normalizeAxis(axis: number, tensorRank: number): number {
if (axis < -tensorRank && axis >= tensorRank) {
throw new Error('unsupported axis for this operation.');
}
return axis < 0 ? axis + tensorRank : axis;
}
static normalizeAxes(axes: readonly number[], tensorRank?: number): number[] {
return axes.map(x => this.normalizeAxis(x, tensorRank ?? axes.length));
}
/**
* Sorts a given array based on the indices in the Perm array
* Used in Transpose
* @param a Array to be sorted such as dims or strides
* @param perm Perm given; if null a will be reversed
*/
static sortBasedOnPerm(a: readonly number[], perm?: readonly number[]): readonly number[] {
if (perm) {
return perm.map((v) => a[v]);
} else {
return a.slice().reverse();
}
}
/**
* Pads a given shape according to the padding values
* @param dims shape of the Tensor to be padded
* @param pad pad values
*/
static padShape(dims: readonly number[], pad: readonly number[]): readonly number[] {
const rank = dims.length;
return dims.map((v, i) => v + pad[i] + pad[i + rank]);
}
/**
* Determines if the two shapes are identical
* @param shape1
* @param shape2
*/
static areEqual(shape1: readonly number[], shape2: readonly number[]): boolean {
if (shape1.length !== shape2.length) {
return false;
}
return shape1.every((v, i) => v === shape2[i]);
}
}
export class PoolConvUtil {
/**
* Adjust the kernel, strides, pads to correct rank. Set to default value if not present
* @param isGlobalOperator If true, perform global pooling.
* @param inputDims The input tensor dimension.
* @param kernelShape The size of the kernel along each axis.
* @param strides Stride along each axis.
* @param dilations Dilation along each axis.
* @param pads Padding for the beginning and ending along each axis.
*/
static adjustPoolAttributes(
isGlobalOperator: boolean, inputDims: readonly number[], kernelShape: number[], strides: number[],
dilations: number[], pads: number[]): void {
if (!isGlobalOperator && kernelShape.length !== inputDims.length - 2) {
throw new Error('length of specified kernel shapes should be 2 less than length of input dimensions');
}
if (isGlobalOperator) {
// adjust kernel shape to cover the input dims
for (let dim = 0; dim < inputDims.length - 2; dim++) {
if (dim >= kernelShape.length) {
kernelShape.push(inputDims[dim + 2]);
} else {
kernelShape[dim] = inputDims[dim + 2];
}
}
}
// adjust strides length to match kernel shape length
for (let dim = 0; dim < kernelShape.length; dim++) {
if (dim < strides.length) {
if (strides[dim] < 0) {
throw new Error('strides should be greater than or equal to 1');
}
} else {
strides.push(1);
}
}
// adjust dilation value
for (let dim = 0; dim < kernelShape.length; dim++) {
if (dim < dilations.length) {
if (dilations[dim] < 0) {
throw new Error('dilations should be greater than or equal to 1');
}
} else {
dilations.push(1);
}
}
// adjust pads length to match 2 * kernel shape length
for (let dim = 0; dim < kernelShape.length * 2; dim++) {
if (dim < pads.length) {
if (pads[dim] < 0) {
throw new Error('pad should be greater than or equal to 1');
}
} else {
pads.push(0);
}
}
// sanity checks for values in kernel shapes and pads
for (let dim = 0; dim < kernelShape.length; dim++) {
if (kernelShape[dim] <= 0) {
throw new Error('kernel shapes need to be greater than 0');
}
if (pads[dim] >= kernelShape[dim] || pads[dim + kernelShape.length] >= kernelShape[dim]) {
throw new Error('pads should be smaller than kernel');
}
}
}
// adjust pad values based on 'autoPad' attribute
static adjustPadsBasedOnAutoPad(
inputDims: readonly number[], strides: readonly number[], dilations: readonly number[],
kernelShape: readonly number[], pads: number[], isChannelLast: boolean, autoPad?: string): void {
if (!autoPad) {
return;
}
if (pads.length !== 2 * (inputDims.length - 2)) {
throw new Error('length of pads should be twice the length of data dimensions');
}
if (strides.length !== (inputDims.length - 2)) {
throw new Error('length of strides should be the length of data dimensions');
}
if (kernelShape.length !== (inputDims.length - 2)) {
throw new Error('length of kernel shapes should be the length of data dimensions');
}
for (let dim = 0; dim < inputDims.length - 2; dim++) {
PoolConvUtil.adjustPadAndReturnShape(
inputDims[dim + (isChannelLast ? 1 : 2)], strides[dim], dilations[dim], kernelShape[dim], pads, dim,
dim + inputDims.length - 2, autoPad);
}
}
/**
* Calculate the output shape for Pool ops based on input attributes. (Should be used only for Pool ops)
* @param isGlobalOperator If true, perform global pooling.
* @param inputDims The input tensor dimension. (inputs[0].dims)
* @param strides Stride along each axis.
* @param dilations Dilation along each axis.
* @param kernelShape The size of the kernel along each axis.
* @param pads Padding for the beginning and ending along each axis.
* @param autoPad DEPRECATED attribute supported for legacy models. Specifies how to implicitly calculate pads in each
* dimension. Can take values NOTSET, SAME_UPPER, SAME_LOWER, or VALID.
*/
static computePoolOutputShape(
isGlobalOperator: boolean, inputDims: readonly number[], strides: number[], dilations: number[],
kernelShape: number[], pads: number[], autoPad?: string): number[] {
if (inputDims.length <= 0) {
throw new Error('input shape must be of size greater than 0');
}
// Add batch size and number of channels of output
const outputDims = [inputDims[0], inputDims[1]];
PoolConvUtil.computeShapeHelper(
isGlobalOperator, inputDims, outputDims, strides, dilations, kernelShape, pads, autoPad);
return outputDims;
}
/**
* Calculate the output shape for Conv op based on input attributes. (Should be used only for Conv op)
* @param inputDims The input tensor dimension. (inputs[0].dims)
* @param filterDims The filter tensor dimension. (inputs[1].dims)
* @param strides Stride along each axis.
* @param kernelShape The size of the kernel along each axis.
* @param pads Padding for the beginning and ending along each axis.
* @param autoPad DEPRECATED attribute supported for legacy models. Specifies how to implicitly calculate pads in each
* dimension. Can take values NOTSET, SAME_UPPER, SAME_LOWER, or VALID.
*/
static computeConvOutputShape(
inputDims: readonly number[], filterDims: readonly number[], strides: number[], dilations: number[],
kernelShape: number[], pads: number[], autoPad?: string): number[] {
if (inputDims.length <= 0 || filterDims.length <= 0) {
throw new Error('invalid input tensor dims or invalid filter tensor dims');
}
// Add batch size and number of channels of output
const outputDims = [inputDims[0], filterDims[0]];
PoolConvUtil.computeShapeHelper(false, inputDims, outputDims, strides, dilations, kernelShape, pads, autoPad);
return outputDims;
}
// will compute output shapes for data dimensions ONLY (i.e.) no batch size and channels
// called by computePoolOutputShape() and computeConvOutputShape()
// adjust pads based on 'autoPad' attribute prior to shape computation
private static computeShapeHelper(
isGlobalOperator: boolean, inputDims: readonly number[], outputDims: number[], strides: readonly number[],
dilations: readonly number[], kernelShape: readonly number[], pads: number[], autoPad?: string) {
if (isGlobalOperator) {
for (let dim = 0; dim < inputDims.length - 2; dim++) {
outputDims.push(1);
}
} else {
for (let dim = 0; dim < inputDims.length - 2; dim++) {
outputDims.push(PoolConvUtil.adjustPadAndReturnShape(
inputDims[dim + 2], strides[dim], dilations[dim], kernelShape[dim], pads, dim, dim + inputDims.length - 2,
autoPad));
}
}
}
// helper for computeShapeHelper() and adjustPadsBasedOnAutoPad()
// adjusts pad value for given 'autoPad' string and computes output shape along a particular dimension
private static adjustPadAndReturnShape(
inSize: number, stride: number, dilation: number, kernel: number, pads: number[], padHeadIndex: number,
padTailIndex: number, autoPad?: string): number {
const dkernel = dilation * (kernel - 1) + 1;
if (autoPad && autoPad !== 'NOTSET') {
switch (autoPad) {
case 'VALID':
pads[padHeadIndex] = 0;
pads[padTailIndex] = 0;
return Math.floor(((inSize - dkernel) / stride) + 1);
case 'SAME_LOWER':
case 'SAME_UPPER':
if (dilation !== 1) {
throw new Error('Dilation not supported for SAME_UPPER or SAME_LOWER');
} else {
const legacyTargetSize = (inSize + stride - 1) / stride;
const padNeeded = (legacyTargetSize - 1) * stride + kernel - inSize;
pads[padHeadIndex] =
(autoPad === 'SAME_LOWER') ? Math.floor((padNeeded + 1) / 2) : Math.floor(padNeeded / 2);
pads[padTailIndex] = padNeeded - pads[padHeadIndex];
return Math.floor(((inSize + padNeeded - kernel) / stride) + 1);
}
default:
throw new Error('Unsupported AutoPad type');
}
} else {
return Math.floor(((inSize + pads[padHeadIndex] + pads[padTailIndex] - dkernel) / stride) + 1);
}
}
}
export class GemmUtil {
// will make sure input shapes are compatible for this op
// and return back the shape of the output in the form of a tuple
// will throw exception if the input shapes are not compatible
static getShapeOfGemmResult(
leftShape: readonly number[], transLeft: boolean, rightShape: readonly number[], transRight: boolean,
biasShape?: readonly number[]): readonly number[] {
if (leftShape.length !== 2 || rightShape.length !== 2) {
throw new Error('shape need to be of size 2');
}
let M: number;
let K: number;
let N: number;
if (transLeft) {
M = leftShape[1];
K = leftShape[0];
} else {
M = leftShape[0];
K = leftShape[1];
}
let kDim = -1;
if (transRight) {
N = rightShape[0];
kDim = 1;
} else {
N = rightShape[1];
kDim = 0;
}
if (rightShape[kDim] !== K) {
throw new Error('dimension mismatch');
}
if (M <= 0 || N <= 0 || K <= 0) {
throw new Error('invalid shape specified');
}
if (biasShape && !BroadcastUtil.isValidBroadcast(biasShape, [M, N])) {
throw new Error('gemm: invalid bias shape for broadcast');
}
return [M, N, K];
}
}
export const MIN_CLIP = -3.4028234663852886e+38;
export const MAX_CLIP = 3.4028234663852886e+38;