-
Notifications
You must be signed in to change notification settings - Fork 3.1k
/
Copy pathconcat.ts
168 lines (144 loc) · 6.32 KB
/
concat.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import {DataType} from '../../../wasm-common';
import {TensorView} from '../../tensor-view';
import {ShapeUtil} from '../../util';
import {AttributeWithCacheKey, createAttributeWithCacheKey} from '../attribute-with-cache-key';
import {ComputeContext, ProgramInfo, ProgramInputTensorInfoDependency, ProgramUniform} from '../types';
import {createTensorShapeVariables, IndicesHelper, inputVariable, outputVariable, ShaderHelper} from './common';
export interface ConcatAttributes extends AttributeWithCacheKey {
readonly axis: number;
}
const validateInputs = (inputs: readonly TensorView[]): void => {
if (!inputs || inputs.length < 1) {
throw new Error('too few inputs');
}
const inputType = inputs[0].dataType;
const inputDimensionality = inputs[0].dims.length;
for (const input of inputs) {
// make sure types of all inputs match
if (input.dataType !== inputType) {
throw new Error('input tensors should be one type');
}
// make sure the dimensionality of all inputs are the same
if (input.dims.length !== inputDimensionality) {
throw new Error('input tensors should have the same shape');
}
}
};
const calculateInputIndexImpl = (numberOfTensors: number, sizeInConcatAxisStr: string): string => `
fn calculateInputIndex(index: u32) -> u32 {
let sizeInConcatAxis = array<u32, ${numberOfTensors}u>(${sizeInConcatAxisStr});
for (var i: u32 = 0u; i < ${numberOfTensors}; i += 1u ) {
if (index < sizeInConcatAxis[i]) {
return i;
}
}
return ${numberOfTensors}u;
}`;
const assignOutputData = (inputs: readonly IndicesHelper[], output: IndicesHelper) => {
const numberOfTensors = inputs.length;
const codeLines: string[] = [];
for (let i = 0; i < numberOfTensors; ++i) {
const returnSnippet = output.setByOffset('global_idx', inputs[i].getByIndices('indices'));
if (numberOfTensors === 1) {
codeLines.push(returnSnippet);
} else if (i === 0) {
codeLines.push(`if (inputIndex == ${i}u) { ${returnSnippet} }`);
} else if (i === numberOfTensors - 1) {
codeLines.push(`else { ${returnSnippet} }`);
} else {
codeLines.push(`else if (inputIndex == ${i}) { ${returnSnippet} }`);
}
}
return codeLines.join('\n');
};
const createConcatProgramInfo = (inputs: readonly TensorView[], axis: number): ProgramInfo => {
const inputShape = inputs[0].dims.slice();
if (axis >= inputShape.length || axis < (-1 * inputShape.length)) {
throw new Error('axis specified for concat doesn\'t match input dimensionality');
}
const adjustedAxis = (axis < 0) ? inputShape.length + axis : axis;
// ensure all of the non-concatenated axes match each other
// calculate the shape of the output tensor while we do that
const outputShape = inputShape.slice(0);
for (let i = 1; i < inputs.length; i++) {
const dataNShape = inputs[i].dims.slice();
for (let axisIndex = 0; axisIndex < inputShape.length; axisIndex++) {
// add to the placeholder for computing output shape
if (axisIndex === adjustedAxis) {
outputShape[adjustedAxis] += dataNShape[axisIndex];
}
// ensure all non-cancatenated axes match each other
else if (inputShape[axisIndex] !== dataNShape[axisIndex]) {
throw new Error('non concat dimensions must match');
}
}
}
const outputSize = ShapeUtil.size(outputShape);
const sizeInConcatAxis = new Array<number>(inputs.length);
const inputVars = new Array<IndicesHelper>(inputs.length);
const dataType = inputs[0].dataType;
let previousSum = 0;
const inputDependencies: ProgramInputTensorInfoDependency[] = [];
const inputRanks = [];
const programUniforms: ProgramUniform[] = [{type: DataType.uint32, data: outputSize}];
for (let i = 0; i < inputs.length; ++i) {
previousSum += inputs[i].dims[adjustedAxis];
sizeInConcatAxis[i] = previousSum;
inputRanks.push(inputs[i].dims.length);
inputVars[i] = inputVariable(`input${i}`, dataType, inputRanks[i]);
inputDependencies.push('rank');
programUniforms.push({type: DataType.uint32, data: sizeInConcatAxis[i]});
}
for (let i = 0; i < inputs.length; ++i) {
programUniforms.push(...createTensorShapeVariables(inputs[i].dims));
}
programUniforms.push(...createTensorShapeVariables(outputShape));
const output = outputVariable('output', dataType, outputShape.length);
const indicesAxis = output.indicesGet('indices', adjustedAxis);
const sizeInConcatAxisStr =
Array.from(Array(sizeInConcatAxis.length).keys()).map(i => `uniforms.sizeInConcatAxis${i}`).join(',');
const getShaderSource = (shaderHelper: ShaderHelper) => `
${(() => {
shaderHelper.registerUniform('outputSize', 'u32');
for (let i = 0; i < inputs.length; i++) {
shaderHelper.registerUniform(`sizeInConcatAxis${i}`, 'u32');
}
return shaderHelper.declareVariables(...inputVars, output);
})()}
${calculateInputIndexImpl(sizeInConcatAxis.length, sizeInConcatAxisStr)}
${shaderHelper.mainStart()}
${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.outputSize')}
var indices = ${output.offsetToIndices('global_idx')};
let inputIndex = calculateInputIndex(${indicesAxis});
if (inputIndex != 0u) {
let sizeInConcatAxis = array<u32, ${sizeInConcatAxis.length}u>(${sizeInConcatAxisStr});
${indicesAxis} -= sizeInConcatAxis[inputIndex - 1u];
}
${assignOutputData(inputVars, output)}
}`;
return {
name: 'Concat',
shaderCache: {hint: `${axis}`, inputDependencies},
getRunData: () => ({
outputs: [{dims: outputShape, dataType: inputs[0].dataType}],
dispatchGroup: {x: Math.ceil(outputSize / 64 /* workgroup size */)},
programUniforms,
}),
getShaderSource,
};
};
export const concat = (context: ComputeContext, attributes: ConcatAttributes): void => {
validateInputs(context.inputs);
// 0 length tensors are valid for concat, remove them
for (let i = 0; i < context.inputs.length; i++) {
const size = ShapeUtil.size(context.inputs[i].dims);
if (size === 0) {
context.inputs.slice(i, 1);
}
}
context.compute(createConcatProgramInfo(context.inputs, attributes.axis));
};
export const parseConcatAttributes = (attributes: Record<string, unknown>): ConcatAttributes =>
createAttributeWithCacheKey({axis: attributes.axis as number});