|
| 1 | +/// # Sample |
| 2 | +/// Simplified Sample of a Variational Quantum Eigensolver |
| 3 | +/// |
| 4 | +/// # Description |
| 5 | +/// This is an example of a Variational Quantum Eigensolver (VQE). |
| 6 | +/// This example includes: |
| 7 | +/// 1. Simple classical optimization to find minimum of a multi-variable function |
| 8 | +/// in order to find an approximation to the minimum eigenvalue of a Hamiltonian |
| 9 | +/// 2. Finding Hamiltonian expectation value as a weighted sum of terms. |
| 10 | +/// 3. Finding one term expectation value by performing multiple shots. |
| 11 | +/// 4. Ansatz state preparation similar to the circuit in the referenced paper. |
| 12 | +/// To keep this sample simple Hamiltonian terms are generated randomly. |
| 13 | +/// |
| 14 | +/// # Reference |
| 15 | +/// Ground-state energy estimation of the water molecule on a trapped ion quantum |
| 16 | +/// computer by Yunseong Nam et al., 2019. https://arxiv.org/abs/1902.10171 |
| 17 | + |
| 18 | +import Std.Arrays.IsEmpty; |
| 19 | +import Std.Arrays.IndexRange; |
| 20 | +import Std.Convert.IntAsDouble; |
| 21 | +import Std.Diagnostics.Fact; |
| 22 | +import Std.Math.AbsD; |
| 23 | +import Std.Math.PI; |
| 24 | + |
| 25 | +/// # Summary |
| 26 | +/// Find the approximation to the minimum eigenvalue of a Hamiltonian by applying VQE |
| 27 | +operation Main() : Double { |
| 28 | + |
| 29 | + // Find the approximation to the minimum eigenvalue of a Hamiltonian |
| 30 | + // by varying ansatz parameters to minimize its expectation value. |
| 31 | + SimpleDescent( |
| 32 | + // Use a number of shots when estimating Hamiltonian terms |
| 33 | + // Actual VQE implementations may require very large number of shots. |
| 34 | + FindHamiltonianExpectationValue(_, 100), |
| 35 | + // Start from these angles for ansatz state preparation |
| 36 | + [1.0, 1.0], |
| 37 | + // Initial step to search for minimum |
| 38 | + 0.5, |
| 39 | + // Stop optimization if step is 0 |
| 40 | + 0.0, |
| 41 | + // Stop optimization after several attempts. |
| 42 | + // Actual VQE would need to make enough iterations |
| 43 | + // to find energy with sufficient chemical accuracy. |
| 44 | + 50 |
| 45 | + ) |
| 46 | +} |
| 47 | + |
| 48 | +/// # Summary |
| 49 | +/// Find expectation value of a Hamiltonian given parameters for the |
| 50 | +/// ansatz state and number of shots to evaluate each term. |
| 51 | +/// Different VQE applications will have different measurements and |
| 52 | +/// coefficients depending on the Hamiltonian being evaluated. |
| 53 | +operation FindHamiltonianExpectationValue(thetas : Double[], shots : Int) : Double { |
| 54 | + let terms = [ |
| 55 | + ([PauliZ, PauliI, PauliI, PauliI], 0.16), |
| 56 | + ([PauliI, PauliI, PauliZ, PauliI], -0.25), |
| 57 | + ([PauliZ, PauliZ, PauliI, PauliI], 0.17), |
| 58 | + ([PauliI, PauliI, PauliZ, PauliZ], 0.45), |
| 59 | + ([PauliX, PauliX, PauliX, PauliX], 0.2), |
| 60 | + ([PauliY, PauliY, PauliY, PauliY], 0.1), |
| 61 | + ([PauliY, PauliX, PauliX, PauliY], -0.02), |
| 62 | + ([PauliX, PauliY, PauliY, PauliX], -0.22), |
| 63 | + ]; |
| 64 | + mutable value = 0.0; |
| 65 | + for (basis, coefficient) in terms { |
| 66 | + value += coefficient * FindTermExpectationValue(thetas, basis, shots); |
| 67 | + } |
| 68 | + value |
| 69 | +} |
| 70 | + |
| 71 | +/// # Summary |
| 72 | +/// Find expectation value of a Hamiltonian term given parameters for the |
| 73 | +/// ansatz state, measurement basis and number of shots to evaluate each term. |
| 74 | +operation FindTermExpectationValue( |
| 75 | + thetas : Double[], |
| 76 | + pauliBasis : Pauli[], |
| 77 | + shots : Int |
| 78 | +) : Double { |
| 79 | + |
| 80 | + mutable zeroCount = 0; |
| 81 | + for _ in 1..shots { |
| 82 | + use qs = Qubit[4]; |
| 83 | + PrepareAnsatzState(qs, thetas); |
| 84 | + if Measure(pauliBasis, qs) == Zero { |
| 85 | + zeroCount += 1; |
| 86 | + } |
| 87 | + ResetAll(qs); |
| 88 | + } |
| 89 | + IntAsDouble(zeroCount) / IntAsDouble(shots) |
| 90 | +} |
| 91 | + |
| 92 | +/// # Summary |
| 93 | +/// Prepare the ansatz state for given parameters on a qubit register |
| 94 | +/// This is an example of ansatz state preparation similar to the |
| 95 | +/// unitary couple clustered method used in the referenced paper. |
| 96 | +/// Actual VQE application will have different ansatz preparation operations. |
| 97 | +operation PrepareAnsatzState(qs : Qubit[], thetas : Double[]) : Unit { |
| 98 | + BosonicExitationTerm(thetas[0], qs[0], qs[2]); |
| 99 | + CNOT(qs[0], qs[1]); |
| 100 | + NonBosonicExitataionTerm(thetas[1], qs[0], qs[1], qs[2], qs[3]); |
| 101 | +} |
| 102 | + |
| 103 | +/// # Summary |
| 104 | +/// Bosonic exitation circuit from the referenced paper. |
| 105 | +operation BosonicExitationTerm( |
| 106 | + theta : Double, |
| 107 | + moX : Qubit, |
| 108 | + moY : Qubit |
| 109 | +) : Unit { |
| 110 | + X(moX); |
| 111 | + Adjoint S(moX); |
| 112 | + Rxx(theta, moX, moY); |
| 113 | + S(moX); |
| 114 | + Adjoint S(moY); |
| 115 | + Rxx(-theta, moX, moY); |
| 116 | + S(moY); |
| 117 | +} |
| 118 | + |
| 119 | +/// # Summary |
| 120 | +/// Non-bosonic exitation circuit from the referenced paper. |
| 121 | +operation NonBosonicExitataionTerm( |
| 122 | + theta : Double, |
| 123 | + moXsoX : Qubit, |
| 124 | + moXsoY : Qubit, |
| 125 | + moYsoX : Qubit, |
| 126 | + moYsoY : Qubit |
| 127 | +) : Unit { |
| 128 | + Adjoint S(moXsoX); |
| 129 | + within { |
| 130 | + CNOT(moXsoX, moYsoY); |
| 131 | + CNOT(moXsoX, moYsoX); |
| 132 | + CNOT(moXsoX, moXsoY); |
| 133 | + H(moXsoX); |
| 134 | + Rz(theta, moXsoX); |
| 135 | + CNOT(moXsoY, moXsoX); |
| 136 | + Rz(theta, moXsoX); |
| 137 | + CNOT(moYsoY, moXsoX); |
| 138 | + Rz(-theta, moXsoX); |
| 139 | + CNOT(moXsoY, moXsoX); |
| 140 | + Rz(-theta, moXsoX); |
| 141 | + } apply { |
| 142 | + Adjoint S(moYsoX); |
| 143 | + CNOT(moYsoX, moXsoX); |
| 144 | + } |
| 145 | + S(moYsoX); |
| 146 | +} |
| 147 | + |
| 148 | +/// # Summary |
| 149 | +/// Simple classical optimizer. A descent to a local minimum of function `f`. |
| 150 | +/// Tries to takes steps in all directions and proceeds if the new point is better. |
| 151 | +/// If no moves result in function value improvement the step size is halved. |
| 152 | +/// Actual VQE implementations use more elaborate optimizers. |
| 153 | +operation SimpleDescent( |
| 154 | + f : Double[] => Double, |
| 155 | + initialPoint : Double[], |
| 156 | + initialStep : Double, |
| 157 | + minimalStep : Double, |
| 158 | + attemptLimit : Int |
| 159 | +) : Double { |
| 160 | + Fact(not IsEmpty(initialPoint), "Argument array must contain elements."); |
| 161 | + Fact(initialStep > 0.0, "Initial step must be positive."); |
| 162 | + Fact(minimalStep >= 0.0, "Minimal step must be non-negative."); |
| 163 | + |
| 164 | + mutable bestPoint = initialPoint; |
| 165 | + mutable bestValue = f(bestPoint); |
| 166 | + mutable currentStep = initialStep; |
| 167 | + mutable currentAttempt = 0; |
| 168 | + |
| 169 | + Message($"Beginning descent from value {bestValue}."); |
| 170 | + |
| 171 | + while (currentAttempt < attemptLimit) and (currentStep > minimalStep) { |
| 172 | + mutable hadImprovement = false; |
| 173 | + for i in IndexRange(initialPoint) { |
| 174 | + let nextPoint = bestPoint w/ i <- bestPoint[i] + currentStep; |
| 175 | + let nextValue = f(nextPoint); // Evaluate quantum part |
| 176 | + currentAttempt = currentAttempt + 1; |
| 177 | + if nextValue < bestValue { |
| 178 | + hadImprovement = true; |
| 179 | + bestValue = nextValue; |
| 180 | + bestPoint = nextPoint; |
| 181 | + Message($"Value improved to {bestValue}."); |
| 182 | + } |
| 183 | + let nextPoint = bestPoint w/ i <- bestPoint[i] - currentStep; |
| 184 | + let nextValue = f(nextPoint); // Evaluate quantum part |
| 185 | + currentAttempt = currentAttempt + 1; |
| 186 | + if nextValue < bestValue { |
| 187 | + hadImprovement = true; |
| 188 | + bestValue = nextValue; |
| 189 | + bestPoint = nextPoint; |
| 190 | + Message($"Value improved to {bestValue}."); |
| 191 | + } |
| 192 | + } |
| 193 | + |
| 194 | + if not hadImprovement { |
| 195 | + currentStep = currentStep / 2.0; |
| 196 | + } |
| 197 | + } |
| 198 | + Message($"Descent done. Attempts: {currentAttempt}, Step: {currentStep}, Arguments: {bestPoint}, Value: {bestValue}."); |
| 199 | + bestValue |
| 200 | +} |
0 commit comments