forked from elastic/elasticsearch-dsl-py
-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdocument_base.py
444 lines (372 loc) · 15.6 KB
/
document_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from datetime import date, datetime
from fnmatch import fnmatch
from typing import (
TYPE_CHECKING,
Any,
Callable,
ClassVar,
Dict,
Generic,
List,
Optional,
Tuple,
TypeVar,
Union,
get_args,
overload,
)
try:
from types import UnionType # type: ignore[attr-defined]
except ImportError:
UnionType = None
from typing_extensions import dataclass_transform
from .exceptions import ValidationException
from .field import Binary, Boolean, Date, Field, Float, Integer, Nested, Object, Text
from .mapping import Mapping
from .utils import DOC_META_FIELDS, ObjectBase
if TYPE_CHECKING:
from elastic_transport import ObjectApiResponse
from .index_base import IndexBase
class MetaField:
def __init__(self, *args: Any, **kwargs: Any):
self.args, self.kwargs = args, kwargs
class InstrumentedField:
"""Proxy object for a mapped document field.
An object of this instance is returned when a field is accessed as a class
attribute of a ``Document`` or ``InnerDoc`` subclass. These objects can
be used in any situation in which a reference to a field is required, such
as when specifying sort options in a search::
class MyDocument(Document):
name: str
s = MyDocument.search()
s = s.sort(-MyDocument.name) # sort by name in descending order
"""
def __init__(self, name: str, field: Field):
self._name = name
self._field = field
# note that the return value type here assumes classes will only be used to
# access fields (I haven't found a way to make this type dynamic based on a
# decision taken at runtime)
def __getattr__(self, attr: str) -> "InstrumentedField":
try:
# first let's see if this is an attribute of this object
return super().__getattribute__(attr) # type: ignore
except AttributeError:
try:
# next we see if we have a sub-field with this name
return InstrumentedField(f"{self._name}.{attr}", self._field[attr])
except KeyError:
# lastly we let the wrapped field resolve this attribute
return getattr(self._field, attr) # type: ignore
def __pos__(self) -> str:
"""Return the field name representation for ascending sort order"""
return f"{self._name}"
def __neg__(self) -> str:
"""Return the field name representation for descending sort order"""
return f"-{self._name}"
def __str__(self) -> str:
return self._name
def __repr__(self) -> str:
return f"InstrumentedField[{self._name}]"
class DocumentMeta(type):
_doc_type: "DocumentOptions"
_index: "IndexBase"
def __new__(
cls, name: str, bases: Tuple[type, ...], attrs: Dict[str, Any]
) -> "DocumentMeta":
# DocumentMeta filters attrs in place
attrs["_doc_type"] = DocumentOptions(name, bases, attrs)
return super().__new__(cls, name, bases, attrs)
def __getattr__(cls, attr: str) -> Any:
if attr in cls._doc_type.mapping:
return InstrumentedField(attr, cls._doc_type.mapping[attr])
return super().__getattribute__(attr)
class DocumentOptions:
type_annotation_map = {
int: (Integer, {}),
float: (Float, {}),
bool: (Boolean, {}),
str: (Text, {}),
bytes: (Binary, {}),
datetime: (Date, {}),
date: (Date, {"format": "yyyy-MM-dd"}),
}
def __init__(self, name: str, bases: Tuple[type, ...], attrs: Dict[str, Any]):
meta = attrs.pop("Meta", None)
# create the mapping instance
self.mapping: Mapping = getattr(meta, "mapping", Mapping())
# register the document's fields, which can be given in a few formats:
#
# class MyDocument(Document):
# # required field using native typing
# # (str, int, float, bool, datetime, date)
# field1: str
#
# # optional field using native typing
# field2: Optional[datetime]
#
# # array field using native typing
# field3: list[int]
#
# # sub-object, same as Object(MyInnerDoc)
# field4: MyInnerDoc
#
# # nested sub-objects, same as Nested(MyInnerDoc)
# field5: list[MyInnerDoc]
#
# # use typing, but override with any stock or custom field
# field6: bool = MyCustomField()
#
# # best mypy and pyright support and dataclass-like behavior
# field7: M[date]
# field8: M[str] = mapped_field(MyCustomText(), default="foo")
#
# # legacy format without Python typing
# field9 = Text()
#
# # ignore attributes
# field10: ClassVar[string] = "a regular class variable"
annotations = attrs.get("__annotations__", {})
fields = set([n for n in attrs if isinstance(attrs[n], Field)])
fields.update(annotations.keys())
field_defaults = {}
for name in fields:
value: Any = None
required = None
multi = None
if name in annotations:
# the field has a type annotation, so next we try to figure out
# what field type we can use
type_ = annotations[name]
skip = False
required = True
multi = False
while hasattr(type_, "__origin__"):
if type_.__origin__ == ClassVar:
skip = True
break
elif type_.__origin__ == Mapped:
# M[type] -> extract the wrapped type
type_ = type_.__args__[0]
elif type_.__origin__ == Union:
if len(type_.__args__) == 2 and type_.__args__[1] is type(None):
# Optional[type] -> mark instance as optional
required = False
type_ = type_.__args__[0]
else:
raise TypeError("Unsupported union")
elif type_.__origin__ in [list, List]:
# List[type] -> mark instance as multi
multi = True
required = False
type_ = type_.__args__[0]
else:
break
if skip or type_ == ClassVar:
# skip ClassVar attributes
continue
if type(type_) is UnionType:
# a union given with the pipe syntax
args = get_args(type_)
if len(args) == 2 and args[1] is type(None):
required = False
type_ = type_.__args__[0]
else:
raise TypeError("Unsupported union")
field = None
field_args: List[Any] = []
field_kwargs: Dict[str, Any] = {}
if isinstance(type_, type) and issubclass(type_, InnerDoc):
# object or nested field
field = Nested if multi else Object
field_args = [type_]
elif type_ in self.type_annotation_map:
# use best field type for the type hint provided
field, field_kwargs = self.type_annotation_map[type_] # type: ignore
if field:
field_kwargs = {
"multi": multi,
"required": required,
**field_kwargs,
}
value = field(*field_args, **field_kwargs)
if name in attrs:
# this field has a right-side value, which can be field
# instance on its own or wrapped with mapped_field()
attr_value = attrs[name]
if isinstance(attr_value, dict):
# the mapped_field() wrapper function was used so we need
# to look for the field instance and also record any
# dataclass-style defaults
attr_value = attrs[name].get("_field")
default_value = attrs[name].get("default") or attrs[name].get(
"default_factory"
)
if default_value:
field_defaults[name] = default_value
if attr_value:
value = attr_value
if required is not None:
value._required = required
if multi is not None:
value._multi = multi
if value is None:
raise TypeError(f"Cannot map field {name}")
self.mapping.field(name, value)
if name in attrs:
del attrs[name]
# store dataclass-style defaults for ObjectBase.__init__ to assign
attrs["_defaults"] = field_defaults
# add all the mappings for meta fields
for name in dir(meta):
if isinstance(getattr(meta, name, None), MetaField):
params = getattr(meta, name)
self.mapping.meta(name, *params.args, **params.kwargs)
# document inheritance - include the fields from parents' mappings
for b in bases:
if hasattr(b, "_doc_type") and hasattr(b._doc_type, "mapping"):
self.mapping.update(b._doc_type.mapping, update_only=True)
@property
def name(self) -> str:
return self.mapping.properties.name
_FieldType = TypeVar("_FieldType")
class Mapped(Generic[_FieldType]):
"""Class that represents the type of a mapped field.
This class can be used as an optional wrapper on a field type to help type
checkers assign the correct type when the field is used as a class
attribute.
Consider the following definitions::
class MyDocument(Document):
first: str
second: M[str]
mydoc = MyDocument(first="1", second="2")
Type checkers have no trouble inferring the type of both ``mydoc.first``
and ``mydoc.second`` as ``str``, but while ``MyDocument.first`` will be
incorrectly typed as ``str``, ``MyDocument.second`` should be assigned the
correct ``InstrumentedField`` type.
"""
__slots__: Dict[str, Any] = {}
if TYPE_CHECKING:
@overload
def __get__(self, instance: None, owner: Any) -> InstrumentedField: ...
@overload
def __get__(self, instance: object, owner: Any) -> _FieldType: ...
def __get__(
self, instance: Optional[object], owner: Any
) -> Union[InstrumentedField, _FieldType]: ...
def __set__(self, instance: Optional[object], value: _FieldType) -> None: ...
def __delete__(self, instance: Any) -> None: ...
M = Mapped
def mapped_field(
field: Optional[Field] = None,
*,
init: bool = True,
default: Any = None,
default_factory: Optional[Callable[[], Any]] = None,
**kwargs: Any,
) -> Any:
"""Construct a field using dataclass behaviors
This function can be used in the right side of a document field definition
as a wrapper for the field instance or as a way to provide dataclass-compatible
options.
:param field: The instance of ``Field`` to use for this field. If not provided,
an instance that is appropriate for the type given to the field is used.
:param init: a value of ``True`` adds this field to the constructor, and a
value of ``False`` omits it from it. The default is ``True``.
:param default: a default value to use for this field when one is not provided
explicitly.
:param default_factory: a callable that returns a default value for the field,
when one isn't provided explicitly. Only one of ``factory`` and
``default_factory`` can be used.
"""
return {
"_field": field,
"init": init,
"default": default,
"default_factory": default_factory,
**kwargs,
}
@dataclass_transform(field_specifiers=(mapped_field,))
class InnerDoc(ObjectBase, metaclass=DocumentMeta):
"""
Common class for inner documents like Object or Nested
"""
@classmethod
def from_es(
cls,
data: Union[Dict[str, Any], "ObjectApiResponse[Any]"],
data_only: bool = False,
) -> "InnerDoc":
if data_only:
data = {"_source": data}
return super().from_es(data)
class DocumentBase(ObjectBase):
"""
Model-like class for persisting documents in elasticsearch.
"""
@classmethod
def _matches(cls, hit: Dict[str, Any]) -> bool:
if cls._index._name is None:
return True
return fnmatch(hit.get("_index", ""), cls._index._name)
@classmethod
def _default_index(cls, index: Optional[str] = None) -> str:
return index or cls._index._name
def _get_index(
self, index: Optional[str] = None, required: bool = True
) -> Optional[str]:
if index is None:
index = getattr(self.meta, "index", None)
if index is None:
index = getattr(self._index, "_name", None)
if index is None and required:
raise ValidationException("No index")
if index and "*" in index:
raise ValidationException("You cannot write to a wildcard index.")
return index
def __repr__(self) -> str:
return "{}({})".format(
self.__class__.__name__,
", ".join(
f"{key}={getattr(self.meta, key)!r}"
for key in ("index", "id")
if key in self.meta
),
)
def to_dict(self, include_meta: bool = False, skip_empty: bool = True) -> Dict[str, Any]: # type: ignore[override]
"""
Serialize the instance into a dictionary so that it can be saved in elasticsearch.
:arg include_meta: if set to ``True`` will include all the metadata
(``_index``, ``_id`` etc). Otherwise just the document's
data is serialized. This is useful when passing multiple instances into
``elasticsearch.helpers.bulk``.
:arg skip_empty: if set to ``False`` will cause empty values (``None``,
``[]``, ``{}``) to be left on the document. Those values will be
stripped out otherwise as they make no difference in elasticsearch.
"""
d = super().to_dict(skip_empty=skip_empty)
if not include_meta:
return d
meta = {"_" + k: self.meta[k] for k in DOC_META_FIELDS if k in self.meta}
# in case of to_dict include the index unlike save/update/delete
index = self._get_index(required=False)
if index is not None:
meta["_index"] = index
meta["_source"] = d
return meta