Skip to content

Commit 37f556d

Browse files
committed
Rename package from algorithmic-efficiency to algoperf.
1 parent ce44582 commit 37f556d

File tree

208 files changed

+489
-467
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

208 files changed

+489
-467
lines changed

.github/workflows/linting.yml

+1-1
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ jobs:
1717
pip install pylint==2.16.1
1818
- name: Run pylint
1919
run: |
20-
pylint algorithmic_efficiency
20+
pylint algoperf
2121
pylint reference_algorithms
2222
pylint prize_qualification_baselines
2323
pylint submission_runner.py

.gitignore

+3-3
Original file line numberDiff line numberDiff line change
@@ -12,8 +12,8 @@ makefile
1212
*.swp
1313
*/data/
1414
*events.out.tfevents*
15-
algorithmic_efficiency/workloads/librispeech_conformer/data_dir
16-
algorithmic_efficiency/workloads/librispeech_conformer/work_dir
15+
algoperf/workloads/librispeech_conformer/data_dir
16+
algoperf/workloads/librispeech_conformer/work_dir
1717
*.flac
1818
*.npy
1919
*.csv
@@ -25,4 +25,4 @@ scoring/plots/
2525
!scoring/test_data/experiment_dir/study_0/mnist_jax/trial_0/eval_measurements.csv
2626
!scoring/test_data/experiment_dir/study_0/mnist_jax/trial_1/eval_measurements.csv
2727

28-
algorithmic_efficiency/_version.py
28+
algoperf/_version.py

CHANGELOG.md

+13-7

CONTRIBUTING.md

+4-4

DOCUMENTATION.md

+1-1

GETTING_STARTED.md

+1-1
File renamed without changes.

algorithmic_efficiency/checkpoint_utils.py renamed to algoperf/checkpoint_utils.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -16,8 +16,8 @@
1616
from tensorflow.io import gfile # pytype: disable=import-error
1717
import torch
1818

19-
from algorithmic_efficiency import spec
20-
from algorithmic_efficiency.pytorch_utils import pytorch_setup
19+
from algoperf import spec
20+
from algoperf.pytorch_utils import pytorch_setup
2121

2222
_, _, DEVICE, _ = pytorch_setup()
2323
CheckpointReturn = Tuple[spec.OptimizerState,

algorithmic_efficiency/data_utils.py renamed to algoperf/data_utils.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@
1111
from torch.utils.data import DistributedSampler
1212
from torch.utils.data import Sampler
1313

14-
from algorithmic_efficiency import spec
14+
from algoperf import spec
1515

1616

1717
def shard_and_maybe_pad_np(
File renamed without changes.
File renamed without changes.

algorithmic_efficiency/interop_utils.py renamed to algoperf/interop_utils.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
import jax.dlpack
22
import torch
33

4-
from algorithmic_efficiency import spec
4+
from algoperf import spec
55

66

77
def jax_to_pytorch(x: spec.Tensor, take_ownership: bool = False) -> spec.Tensor:

algorithmic_efficiency/logger_utils.py renamed to algoperf/logger_utils.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,8 @@
1818
import psutil
1919
import torch.distributed as dist
2020

21-
from algorithmic_efficiency import spec
22-
from algorithmic_efficiency.pytorch_utils import pytorch_setup
21+
from algoperf import spec
22+
from algoperf.pytorch_utils import pytorch_setup
2323

2424
USE_PYTORCH_DDP, RANK, DEVICE, _ = pytorch_setup()
2525

algorithmic_efficiency/param_utils.py renamed to algoperf/param_utils.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
import jax
77
from torch import nn
88

9-
from algorithmic_efficiency import spec
9+
from algoperf import spec
1010

1111

1212
def pytorch_param_shapes(model: nn.Module) -> Dict[str, spec.ShapeTuple]:
File renamed without changes.

algorithmic_efficiency/pytorch_utils.py renamed to algoperf/pytorch_utils.py

+4-4
Original file line numberDiff line numberDiff line change
@@ -7,11 +7,11 @@
77
import torch
88
import torch.distributed as dist
99

10-
from algorithmic_efficiency import spec
11-
from algorithmic_efficiency.profiler import Profiler
12-
from algorithmic_efficiency.workloads.librispeech_conformer.librispeech_pytorch.models import \
10+
from algoperf import spec
11+
from algoperf.profiler import Profiler
12+
from algoperf.workloads.librispeech_conformer.librispeech_pytorch.models import \
1313
BatchNorm as ConformerBatchNorm
14-
from algorithmic_efficiency.workloads.librispeech_deepspeech.librispeech_pytorch.models import \
14+
from algoperf.workloads.librispeech_deepspeech.librispeech_pytorch.models import \
1515
BatchNorm as DeepspeechBatchNorm
1616

1717

File renamed without changes.
File renamed without changes.

algorithmic_efficiency/workloads/cifar/cifar_jax/input_pipeline.py renamed to algoperf/workloads/cifar/cifar_jax/input_pipeline.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -13,8 +13,8 @@
1313
import tensorflow as tf
1414
import tensorflow_datasets as tfds
1515

16-
from algorithmic_efficiency import spec
17-
from algorithmic_efficiency.data_utils import shard_and_maybe_pad_np
16+
from algoperf import spec
17+
from algoperf.data_utils import shard_and_maybe_pad_np
1818

1919

2020
def preprocess_for_train(image: spec.Tensor,

algorithmic_efficiency/workloads/cifar/cifar_jax/models.py renamed to algoperf/workloads/cifar/cifar_jax/models.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -10,8 +10,8 @@
1010
from flax import linen as nn
1111
import jax.numpy as jnp
1212

13-
from algorithmic_efficiency import spec
14-
from algorithmic_efficiency.workloads.imagenet_resnet.imagenet_jax.models import \
13+
from algoperf import spec
14+
from algoperf.workloads.imagenet_resnet.imagenet_jax.models import \
1515
ResNetBlock
1616

1717
ModuleDef = nn.Module

algorithmic_efficiency/workloads/cifar/cifar_jax/workload.py renamed to algoperf/workloads/cifar/cifar_jax/workload.py

+5-5
Original file line numberDiff line numberDiff line change
@@ -11,12 +11,12 @@
1111
import optax
1212
import tensorflow_datasets as tfds
1313

14-
from algorithmic_efficiency import param_utils
15-
from algorithmic_efficiency import spec
16-
from algorithmic_efficiency.workloads.cifar.cifar_jax import models
17-
from algorithmic_efficiency.workloads.cifar.cifar_jax.input_pipeline import \
14+
from algoperf import param_utils
15+
from algoperf import spec
16+
from algoperf.workloads.cifar.cifar_jax import models
17+
from algoperf.workloads.cifar.cifar_jax.input_pipeline import \
1818
create_input_iter
19-
from algorithmic_efficiency.workloads.cifar.workload import BaseCifarWorkload
19+
from algoperf.workloads.cifar.workload import BaseCifarWorkload
2020

2121

2222
class CifarWorkload(BaseCifarWorkload):

algorithmic_efficiency/workloads/cifar/cifar_pytorch/models.py renamed to algoperf/workloads/cifar/cifar_pytorch/models.py

+5-5
Original file line numberDiff line numberDiff line change
@@ -10,13 +10,13 @@
1010
import torch
1111
from torch import nn
1212

13-
from algorithmic_efficiency import spec
14-
from algorithmic_efficiency.init_utils import pytorch_default_init
15-
from algorithmic_efficiency.workloads.imagenet_resnet.imagenet_pytorch.models import \
13+
from algoperf import spec
14+
from algoperf.init_utils import pytorch_default_init
15+
from algoperf.workloads.imagenet_resnet.imagenet_pytorch.models import \
1616
BasicBlock
17-
from algorithmic_efficiency.workloads.imagenet_resnet.imagenet_pytorch.models import \
17+
from algoperf.workloads.imagenet_resnet.imagenet_pytorch.models import \
1818
Bottleneck
19-
from algorithmic_efficiency.workloads.imagenet_resnet.imagenet_pytorch.models import \
19+
from algoperf.workloads.imagenet_resnet.imagenet_pytorch.models import \
2020
conv1x1
2121

2222

algorithmic_efficiency/workloads/cifar/cifar_pytorch/workload.py renamed to algoperf/workloads/cifar/cifar_pytorch/workload.py

+6-6
Original file line numberDiff line numberDiff line change
@@ -12,13 +12,13 @@
1212
from torchvision import transforms
1313
from torchvision.datasets import CIFAR10
1414

15-
from algorithmic_efficiency import data_utils
16-
from algorithmic_efficiency import param_utils
17-
from algorithmic_efficiency import pytorch_utils
18-
from algorithmic_efficiency import spec
19-
from algorithmic_efficiency.workloads.cifar.cifar_pytorch.models import \
15+
from algoperf import data_utils
16+
from algoperf import param_utils
17+
from algoperf import pytorch_utils
18+
from algoperf import spec
19+
from algoperf.workloads.cifar.cifar_pytorch.models import \
2020
resnet18
21-
from algorithmic_efficiency.workloads.cifar.workload import BaseCifarWorkload
21+
from algoperf.workloads.cifar.workload import BaseCifarWorkload
2222

2323
USE_PYTORCH_DDP, RANK, DEVICE, N_GPUS = pytorch_utils.pytorch_setup()
2424

algorithmic_efficiency/workloads/cifar/workload.py renamed to algoperf/workloads/cifar/workload.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -7,9 +7,9 @@
77
import jax
88
import torch
99

10-
from algorithmic_efficiency import spec
11-
from algorithmic_efficiency.pytorch_utils import pytorch_setup
12-
import algorithmic_efficiency.random_utils as prng
10+
from algoperf import spec
11+
from algoperf.pytorch_utils import pytorch_setup
12+
import algoperf.random_utils as prng
1313

1414
USE_PYTORCH_DDP, _, _, _ = pytorch_setup()
1515

algorithmic_efficiency/workloads/criteo1tb/criteo1tb_jax/workload.py renamed to algoperf/workloads/criteo1tb/criteo1tb_jax/workload.py

+4-4
Original file line numberDiff line numberDiff line change
@@ -8,10 +8,10 @@
88
import jax.numpy as jnp
99
import numpy as np
1010

11-
from algorithmic_efficiency import param_utils
12-
from algorithmic_efficiency import spec
13-
from algorithmic_efficiency.workloads.criteo1tb.criteo1tb_jax import models
14-
from algorithmic_efficiency.workloads.criteo1tb.workload import \
11+
from algoperf import param_utils
12+
from algoperf import spec
13+
from algoperf.workloads.criteo1tb.criteo1tb_jax import models
14+
from algoperf.workloads.criteo1tb.workload import \
1515
BaseCriteo1TbDlrmSmallWorkload
1616

1717

algorithmic_efficiency/workloads/criteo1tb/criteo1tb_pytorch/workload.py renamed to algoperf/workloads/criteo1tb/criteo1tb_pytorch/workload.py

+5-5
Original file line numberDiff line numberDiff line change
@@ -7,11 +7,11 @@
77
import torch.distributed as dist
88
from torch.nn.parallel import DistributedDataParallel as DDP
99

10-
from algorithmic_efficiency import param_utils
11-
from algorithmic_efficiency import spec
12-
from algorithmic_efficiency.pytorch_utils import pytorch_setup
13-
from algorithmic_efficiency.workloads.criteo1tb.criteo1tb_pytorch import models
14-
from algorithmic_efficiency.workloads.criteo1tb.workload import \
10+
from algoperf import param_utils
11+
from algoperf import spec
12+
from algoperf.pytorch_utils import pytorch_setup
13+
from algoperf.workloads.criteo1tb.criteo1tb_pytorch import models
14+
from algoperf.workloads.criteo1tb.workload import \
1515
BaseCriteo1TbDlrmSmallWorkload
1616

1717
USE_PYTORCH_DDP, RANK, DEVICE, N_GPUS = pytorch_setup()

algorithmic_efficiency/workloads/criteo1tb/input_pipeline.py renamed to algoperf/workloads/criteo1tb/input_pipeline.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@
1212

1313
import tensorflow as tf
1414

15-
from algorithmic_efficiency import data_utils
15+
from algoperf import data_utils
1616

1717
_NUM_DAY_23_FILES = 36
1818

algorithmic_efficiency/workloads/criteo1tb/workload.py renamed to algoperf/workloads/criteo1tb/workload.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -7,8 +7,8 @@
77
from absl import flags
88
import torch.distributed as dist
99

10-
from algorithmic_efficiency import spec
11-
from algorithmic_efficiency.workloads.criteo1tb import input_pipeline
10+
from algoperf import spec
11+
from algoperf.workloads.criteo1tb import input_pipeline
1212

1313
FLAGS = flags.FLAGS
1414

algorithmic_efficiency/workloads/fastmri/fastmri_jax/workload.py renamed to algoperf/workloads/fastmri/fastmri_jax/workload.py

+6-6
Original file line numberDiff line numberDiff line change
@@ -8,12 +8,12 @@
88
import jax
99
import jax.numpy as jnp
1010

11-
from algorithmic_efficiency import param_utils
12-
from algorithmic_efficiency import spec
13-
import algorithmic_efficiency.random_utils as prng
14-
from algorithmic_efficiency.workloads.fastmri.fastmri_jax.models import UNet
15-
from algorithmic_efficiency.workloads.fastmri.fastmri_jax.ssim import ssim
16-
from algorithmic_efficiency.workloads.fastmri.workload import \
11+
from algoperf import param_utils
12+
from algoperf import spec
13+
import algoperf.random_utils as prng
14+
from algoperf.workloads.fastmri.fastmri_jax.models import UNet
15+
from algoperf.workloads.fastmri.fastmri_jax.ssim import ssim
16+
from algoperf.workloads.fastmri.workload import \
1717
BaseFastMRIWorkload
1818

1919

algorithmic_efficiency/workloads/fastmri/fastmri_pytorch/models.py renamed to algoperf/workloads/fastmri/fastmri_pytorch/models.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@
1212
from torch import Tensor
1313
from torch.nn import functional as F
1414

15-
from algorithmic_efficiency import init_utils
15+
from algoperf import init_utils
1616

1717

1818
class UNet(nn.Module):

algorithmic_efficiency/workloads/fastmri/fastmri_pytorch/ssim.py renamed to algoperf/workloads/fastmri/fastmri_pytorch/ssim.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
import torch.nn.functional as F
77
from torchvision.transforms.functional import pad as pad_fn
88

9-
from algorithmic_efficiency.pytorch_utils import pytorch_setup
9+
from algoperf.pytorch_utils import pytorch_setup
1010

1111
DEVICE = pytorch_setup()[2]
1212

algorithmic_efficiency/workloads/fastmri/fastmri_pytorch/workload.py renamed to algoperf/workloads/fastmri/fastmri_pytorch/workload.py

+7-7
Original file line numberDiff line numberDiff line change
@@ -9,14 +9,14 @@
99
import torch.nn.functional as F
1010
from torch.nn.parallel import DistributedDataParallel as DDP
1111

12-
from algorithmic_efficiency import param_utils
13-
from algorithmic_efficiency import pytorch_utils
14-
from algorithmic_efficiency import spec
15-
import algorithmic_efficiency.random_utils as prng
16-
from algorithmic_efficiency.workloads.fastmri.fastmri_pytorch.models import \
12+
from algoperf import param_utils
13+
from algoperf import pytorch_utils
14+
from algoperf import spec
15+
import algoperf.random_utils as prng
16+
from algoperf.workloads.fastmri.fastmri_pytorch.models import \
1717
UNet
18-
from algorithmic_efficiency.workloads.fastmri.fastmri_pytorch.ssim import ssim
19-
from algorithmic_efficiency.workloads.fastmri.workload import \
18+
from algoperf.workloads.fastmri.fastmri_pytorch.ssim import ssim
19+
from algoperf.workloads.fastmri.workload import \
2020
BaseFastMRIWorkload
2121

2222
USE_PYTORCH_DDP, RANK, DEVICE, N_GPUS = pytorch_utils.pytorch_setup()

0 commit comments

Comments
 (0)