-
Notifications
You must be signed in to change notification settings - Fork 852
/
Copy pathtest_func_metadata.py
401 lines (355 loc) · 13.6 KB
/
test_func_metadata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
from typing import Annotated
import annotated_types
import pytest
from pydantic import BaseModel, Field
from mcp.server.fastmcp.utilities.func_metadata import func_metadata
class SomeInputModelA(BaseModel):
pass
class SomeInputModelB(BaseModel):
class InnerModel(BaseModel):
x: int
how_many_shrimp: Annotated[int, Field(description="How many shrimp in the tank???")]
ok: InnerModel
y: None
def complex_arguments_fn(
an_int: int,
must_be_none: None,
must_be_none_dumb_annotation: Annotated[None, "blah"],
list_of_ints: list[int],
# list[str] | str is an interesting case because if it comes in as JSON like
# "[\"a\", \"b\"]" then it will be naively parsed as a string.
list_str_or_str: list[str] | str,
an_int_annotated_with_field: Annotated[
int, Field(description="An int with a field")
],
an_int_annotated_with_field_and_others: Annotated[
int,
str, # Should be ignored, really
Field(description="An int with a field"),
annotated_types.Gt(1),
],
an_int_annotated_with_junk: Annotated[
int,
"123",
456,
],
field_with_default_via_field_annotation_before_nondefault_arg: Annotated[
int, Field(1)
],
unannotated,
my_model_a: SomeInputModelA,
my_model_a_forward_ref: "SomeInputModelA",
my_model_b: SomeInputModelB,
an_int_annotated_with_field_default: Annotated[
int,
Field(1, description="An int with a field"),
],
unannotated_with_default=5,
my_model_a_with_default: SomeInputModelA = SomeInputModelA(), # noqa: B008
an_int_with_default: int = 1,
must_be_none_with_default: None = None,
an_int_with_equals_field: int = Field(1, ge=0),
int_annotated_with_default: Annotated[int, Field(description="hey")] = 5,
) -> str:
_ = (
an_int,
must_be_none,
must_be_none_dumb_annotation,
list_of_ints,
list_str_or_str,
an_int_annotated_with_field,
an_int_annotated_with_field_and_others,
an_int_annotated_with_junk,
field_with_default_via_field_annotation_before_nondefault_arg,
unannotated,
an_int_annotated_with_field_default,
unannotated_with_default,
my_model_a,
my_model_a_forward_ref,
my_model_b,
my_model_a_with_default,
an_int_with_default,
must_be_none_with_default,
an_int_with_equals_field,
int_annotated_with_default,
)
return "ok!"
@pytest.mark.anyio
async def test_complex_function_runtime_arg_validation_non_json():
"""Test that basic non-JSON arguments are validated correctly"""
meta = func_metadata(complex_arguments_fn)
# Test with minimum required arguments
result = await meta.call_fn_with_arg_validation(
complex_arguments_fn,
fn_is_async=False,
arguments_to_validate={
"an_int": 1,
"must_be_none": None,
"must_be_none_dumb_annotation": None,
"list_of_ints": [1, 2, 3],
"list_str_or_str": "hello",
"an_int_annotated_with_field": 42,
"an_int_annotated_with_field_and_others": 5,
"an_int_annotated_with_junk": 100,
"unannotated": "test",
"my_model_a": {},
"my_model_a_forward_ref": {},
"my_model_b": {"how_many_shrimp": 5, "ok": {"x": 1}, "y": None},
},
arguments_to_pass_directly=None,
)
assert result == "ok!"
# Test with invalid types
with pytest.raises(ValueError):
await meta.call_fn_with_arg_validation(
complex_arguments_fn,
fn_is_async=False,
arguments_to_validate={"an_int": "not an int"},
arguments_to_pass_directly=None,
)
@pytest.mark.anyio
async def test_complex_function_runtime_arg_validation_with_json():
"""Test that JSON string arguments are parsed and validated correctly"""
meta = func_metadata(complex_arguments_fn)
result = await meta.call_fn_with_arg_validation(
complex_arguments_fn,
fn_is_async=False,
arguments_to_validate={
"an_int": 1,
"must_be_none": None,
"must_be_none_dumb_annotation": None,
"list_of_ints": "[1, 2, 3]", # JSON string
"list_str_or_str": '["a", "b", "c"]', # JSON string
"an_int_annotated_with_field": 42,
"an_int_annotated_with_field_and_others": "5", # JSON string
"an_int_annotated_with_junk": 100,
"unannotated": "test",
"my_model_a": "{}", # JSON string
"my_model_a_forward_ref": "{}", # JSON string
"my_model_b": '{"how_many_shrimp": 5, "ok": {"x": 1}, "y": null}',
},
arguments_to_pass_directly=None,
)
assert result == "ok!"
def test_str_vs_list_str():
"""Test handling of string vs list[str] type annotations.
This is tricky as '"hello"' can be parsed as a JSON string or a Python string.
We want to make sure it's kept as a python string.
"""
def func_with_str_types(str_or_list: str | list[str]):
return str_or_list
meta = func_metadata(func_with_str_types)
# Test string input for union type
result = meta.pre_parse_json({"str_or_list": "hello"})
assert result["str_or_list"] == "hello"
# Test string input that contains valid JSON for union type
# We want to see here that the JSON-vali string is NOT parsed as JSON, but rather
# kept as a raw string
result = meta.pre_parse_json({"str_or_list": '"hello"'})
assert result["str_or_list"] == '"hello"'
# Test list input for union type
result = meta.pre_parse_json({"str_or_list": '["hello", "world"]'})
assert result["str_or_list"] == ["hello", "world"]
def test_skip_names():
"""Test that skipped parameters are not included in the model"""
def func_with_many_params(
keep_this: int, skip_this: str, also_keep: float, also_skip: bool
):
return keep_this, skip_this, also_keep, also_skip
# Skip some parameters
meta = func_metadata(func_with_many_params, skip_names=["skip_this", "also_skip"])
# Check model fields
assert "keep_this" in meta.arg_model.model_fields
assert "also_keep" in meta.arg_model.model_fields
assert "skip_this" not in meta.arg_model.model_fields
assert "also_skip" not in meta.arg_model.model_fields
# Validate that we can call with only non-skipped parameters
model: BaseModel = meta.arg_model.model_validate({"keep_this": 1, "also_keep": 2.5}) # type: ignore
assert model.keep_this == 1 # type: ignore
assert model.also_keep == 2.5 # type: ignore
@pytest.mark.anyio
async def test_lambda_function():
"""Test lambda function schema and validation"""
fn = lambda x, y=5: x # noqa: E731
meta = func_metadata(lambda x, y=5: x)
# Test schema
assert meta.arg_model.model_json_schema() == {
"properties": {
"x": {"title": "x", "type": "string"},
"y": {"default": 5, "title": "y", "type": "string"},
},
"required": ["x"],
"title": "<lambda>Arguments",
"type": "object",
}
async def check_call(args):
return await meta.call_fn_with_arg_validation(
fn,
fn_is_async=False,
arguments_to_validate=args,
arguments_to_pass_directly=None,
)
# Basic calls
assert await check_call({"x": "hello"}) == "hello"
assert await check_call({"x": "hello", "y": "world"}) == "hello"
assert await check_call({"x": '"hello"'}) == '"hello"'
# Missing required arg
with pytest.raises(ValueError):
await check_call({"y": "world"})
def test_complex_function_json_schema():
"""Test JSON schema generation for complex function arguments.
Note: Different versions of pydantic output slightly different
JSON Schema formats for model fields with defaults. The format changed in 2.9.0:
1. Before 2.9.0:
{
"allOf": [{"$ref": "#/$defs/Model"}],
"default": {}
}
2. Since 2.9.0:
{
"$ref": "#/$defs/Model",
"default": {}
}
Both formats are valid and functionally equivalent. This test accepts either format
to ensure compatibility across our supported pydantic versions.
This change in format does not affect runtime behavior since:
1. Both schemas validate the same way
2. The actual model classes and validation logic are unchanged
3. func_metadata uses model_validate/model_dump, not the schema directly
"""
meta = func_metadata(complex_arguments_fn)
actual_schema = meta.arg_model.model_json_schema()
# Create a copy of the actual schema to normalize
normalized_schema = actual_schema.copy()
# Normalize the my_model_a_with_default field to handle both pydantic formats
if "allOf" in actual_schema["properties"]["my_model_a_with_default"]:
normalized_schema["properties"]["my_model_a_with_default"] = {
"$ref": "#/$defs/SomeInputModelA",
"default": {},
}
assert normalized_schema == {
"$defs": {
"InnerModel": {
"properties": {"x": {"title": "X", "type": "integer"}},
"required": ["x"],
"title": "InnerModel",
"type": "object",
},
"SomeInputModelA": {
"properties": {},
"title": "SomeInputModelA",
"type": "object",
},
"SomeInputModelB": {
"properties": {
"how_many_shrimp": {
"description": "How many shrimp in the tank???",
"title": "How Many Shrimp",
"type": "integer",
},
"ok": {"$ref": "#/$defs/InnerModel"},
"y": {"title": "Y", "type": "null"},
},
"required": ["how_many_shrimp", "ok", "y"],
"title": "SomeInputModelB",
"type": "object",
},
},
"properties": {
"an_int": {"title": "An Int", "type": "integer"},
"must_be_none": {"title": "Must Be None", "type": "null"},
"must_be_none_dumb_annotation": {
"title": "Must Be None Dumb Annotation",
"type": "null",
},
"list_of_ints": {
"items": {"type": "integer"},
"title": "List Of Ints",
"type": "array",
},
"list_str_or_str": {
"anyOf": [
{"items": {"type": "string"}, "type": "array"},
{"type": "string"},
],
"title": "List Str Or Str",
},
"an_int_annotated_with_field": {
"description": "An int with a field",
"title": "An Int Annotated With Field",
"type": "integer",
},
"an_int_annotated_with_field_and_others": {
"description": "An int with a field",
"exclusiveMinimum": 1,
"title": "An Int Annotated With Field And Others",
"type": "integer",
},
"an_int_annotated_with_junk": {
"title": "An Int Annotated With Junk",
"type": "integer",
},
"field_with_default_via_field_annotation_before_nondefault_arg": {
"default": 1,
"title": "Field With Default Via Field Annotation Before Nondefault Arg",
"type": "integer",
},
"unannotated": {"title": "unannotated", "type": "string"},
"my_model_a": {"$ref": "#/$defs/SomeInputModelA"},
"my_model_a_forward_ref": {"$ref": "#/$defs/SomeInputModelA"},
"my_model_b": {"$ref": "#/$defs/SomeInputModelB"},
"an_int_annotated_with_field_default": {
"default": 1,
"description": "An int with a field",
"title": "An Int Annotated With Field Default",
"type": "integer",
},
"unannotated_with_default": {
"default": 5,
"title": "unannotated_with_default",
"type": "string",
},
"my_model_a_with_default": {
"$ref": "#/$defs/SomeInputModelA",
"default": {},
},
"an_int_with_default": {
"default": 1,
"title": "An Int With Default",
"type": "integer",
},
"must_be_none_with_default": {
"default": None,
"title": "Must Be None With Default",
"type": "null",
},
"an_int_with_equals_field": {
"default": 1,
"minimum": 0,
"title": "An Int With Equals Field",
"type": "integer",
},
"int_annotated_with_default": {
"default": 5,
"description": "hey",
"title": "Int Annotated With Default",
"type": "integer",
},
},
"required": [
"an_int",
"must_be_none",
"must_be_none_dumb_annotation",
"list_of_ints",
"list_str_or_str",
"an_int_annotated_with_field",
"an_int_annotated_with_field_and_others",
"an_int_annotated_with_junk",
"unannotated",
"my_model_a",
"my_model_a_forward_ref",
"my_model_b",
],
"title": "complex_arguments_fnArguments",
"type": "object",
}