-
Notifications
You must be signed in to change notification settings - Fork 613
/
Copy pathmixin.py
577 lines (515 loc) · 26.9 KB
/
mixin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
# Copyright (c) Alibaba, Inc. and its affiliates.
# Part of the implementation is borrowed from huggingface/transformers.
import os
import re
import shutil
import time
from distutils.util import strtobool
from pathlib import Path
from types import MethodType
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import json
import numpy as np
import safetensors
import torch
import transformers
from datasets import Dataset as HfDataset
from packaging import version
from peft import PeftModel
from torch.nn import Module
from transformers import PreTrainedModel, PreTrainedTokenizerBase
from transformers.data.data_collator import DataCollator
from transformers.modeling_utils import unwrap_model
from transformers.trainer import (ADAPTER_CONFIG_NAME, ADAPTER_SAFE_WEIGHTS_NAME, ADAPTER_WEIGHTS_NAME, CONFIG_NAME,
PREFIX_CHECKPOINT_DIR, SAFE_WEIGHTS_NAME, TRAINER_STATE_NAME, TRAINING_ARGS_NAME,
WEIGHTS_NAME, IntervalStrategy, Trainer, TrainerCallback, is_peft_available)
from transformers.trainer_utils import EvalPrediction, HubStrategy
from transformers.training_args import TrainingArguments
from transformers.utils import is_sagemaker_mp_enabled, is_torch_npu_available, PushInProgress
from swift.hub import Repository
from swift.hub.check_model import check_local_model_is_latest
from swift.torchacc_utils import (save_ta_ddp_checkpoint, save_ta_fsdp_checkpoint, ta_load_optimizer_and_scheduler,
ta_save_optimizer_and_scheduler, ta_trim_graph)
from swift.tuners import SwiftModel
from swift.utils import check_json_format, create_ms_repo, get_logger, use_torchacc, push_to_ms_hub
from swift.utils.constants import Invoke
from .optimizers.galore import create_optimizer_and_scheduler
from .utils import can_return_loss, find_labels, get_function, is_instance_of_ms_model
logger = get_logger()
class PushToMsHubMixin:
repo: Repository
_hub_type = 'hf' if strtobool(os.environ.get('USE_HF', 'False')) else 'ms'
if _hub_type == 'ms':
import transformers.trainer
transformers.trainer.create_repo = create_ms_repo
transformers.trainer.upload_folder = push_to_ms_hub
def init_hf_repo(self) -> None:
if self._hub_type == 'hf':
return super().init_hf_repo()
else:
self.init_git_repo(at_init=True)
def _add_patterns_to_file(self, file_name: str, patterns: List[str], commit_message: Optional[str] = None) -> None:
# Make sure we only do this on the main process
if not self.is_world_process_zero():
return
if isinstance(patterns, str):
patterns = [patterns]
if commit_message is None:
commit_message = f'Add `{patterns[0]}` patterns to {file_name}'
# Get current file content
repo_dir = self.repo.model_dir
file_path = os.path.join(repo_dir, file_name)
if os.path.exists(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
current_content = f.read()
else:
current_content = ''
# Add the patterns to file
content = current_content
for pattern in patterns:
if pattern not in content:
if len(content) > 0 and not content.endswith('\n'):
content += '\n'
content += f'{pattern}\n'
# Write the file if it has changed
if content != current_content:
with open(file_path, 'w', encoding='utf-8') as f:
logger.debug(f'Writing {file_name} file. Content: {content}')
f.write(content)
self.repo.push(commit_message)
def _add_patterns_to_gitignore(self, patterns: List[str], commit_message: Optional[str] = None) -> None:
self._add_patterns_to_file('.gitignore', patterns, commit_message)
def _add_patterns_to_gitattributes(self, patterns: List[str], commit_message: Optional[str] = None) -> None:
new_patterns = []
suffix = 'filter=lfs diff=lfs merge=lfs -text'
for pattern in patterns:
if suffix not in pattern:
pattern = f'{pattern} {suffix}'
new_patterns.append(pattern)
file_name = '.gitattributes'
if commit_message is None:
commit_message = f'Add `{patterns[0]}` patterns to {file_name}'
self._add_patterns_to_file(file_name, new_patterns, commit_message)
@staticmethod
def _push_to_hub(repo: Repository, commit_message: str = 'Commit files to Modelscope Hub', **kwargs):
blocking = kwargs.get('blocking', True)
repo.push(commit_message)
if not blocking:
# Compatible with transformers
return None, None
else:
return None
def init_git_repo(self, at_init: bool = False) -> None:
if not self.is_world_process_zero():
return
if (os.path.exists(self.args.output_dir) and os.listdir(self.args.output_dir) and self.args.overwrite_output_dir
and at_init):
# directory not empty.
shutil.rmtree(self.args.output_dir)
self.args.hub_model_id = create_ms_repo(self.args.hub_model_id, self.args.hub_token, self.args.hub_private_repo)
self.repo = Repository(self.args.output_dir, self.args.hub_model_id)
self._add_patterns_to_gitattributes(['*.safetensors', '*.bin', '*.pt'])
self.repo.push_to_hub = MethodType(self._push_to_hub, self.repo)
self.repo.local_dir = self.repo.model_dir # hf compatibility
# By default, ignore the checkpoint folders
if self.args.push_hub_strategy != 'all_checkpoints':
self._add_patterns_to_gitignore(['checkpoint-*/', 'tmp-checkpoint-*/'])
# Add 'runs/' to .gitignore, ignore tensorboard files
self._add_patterns_to_gitignore(['runs/'])
# Add '*.sagemaker' to .gitignore if using SageMaker
if os.environ.get('SM_TRAINING_ENV'):
self._add_patterns_to_gitignore(['*.sagemaker-uploading', '*.sagemaker-uploaded'],
'Add `*.sagemaker` patterns to .gitignore')
self.push_in_progress = None
class SwiftMixin:
def __init__(self,
model: Union[PreTrainedModel, Module] = None,
args: TrainingArguments = None,
data_collator: Optional[DataCollator] = None,
train_dataset: Optional[HfDataset] = None,
eval_dataset: Optional[Union[HfDataset, Dict[str, HfDataset]]] = None,
tokenizer: Optional[PreTrainedTokenizerBase] = None,
model_init: Optional[Callable[[], PreTrainedModel]] = None,
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
callbacks: Optional[List[TrainerCallback]] = None,
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
**kwargs) -> None:
check_model = kwargs.pop('check_model', True)
if check_model and hasattr(model, 'model_dir'):
check_local_model_is_latest(
model.model_dir,
user_agent={
Invoke.KEY: Invoke.LOCAL_TRAINER,
Invoke.THIRD_PARTY: kwargs.pop(Invoke.THIRD_PARTY, Invoke.SWIFT),
})
# Compatible with transformers>=4.34
from swift.tuners import SwiftModel
is_quantized = getattr(model, 'is_quantized', False)
_hf_peft_config_loaded = getattr(model, '_hf_peft_config_loaded', False)
use_swift = isinstance(model, SwiftModel)
if is_quantized and use_swift:
model._hf_peft_config_loaded = True
# mro
super().__init__(
model=model,
args=args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
model_init=model_init,
compute_metrics=compute_metrics,
callbacks=callbacks,
optimizers=optimizers,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
**kwargs)
if not self.label_names:
self.label_names = ['labels']
if is_quantized and use_swift:
model._hf_peft_config_loaded = _hf_peft_config_loaded
if get_function(model.__class__.forward) is not get_function(model.forward):
self.label_names = find_labels(model)
self.can_return_loss = can_return_loss(model)
self.max_memory = 0.0
self.start_time = time.time()
self._resume_from_checkpoint = None
self._resume_only_model = False
# performance
self.perf: Dict[str, Any] = {'memory': {}}
if hasattr(self.model, 'get_trainable_parameters'):
self.perf['model'] = self.model.get_trainable_parameters()
@staticmethod
def _create_configuration_file(model: Module, output_dir: str) -> None:
cfg = getattr(model, 'cfg', {})
configuration_path = os.path.join(output_dir, 'configuration.json')
new_cfg = {}
if os.path.exists(configuration_path):
with open(configuration_path, 'r', encoding='utf-8') as f:
new_cfg = json.load(f)
if 'framework' not in new_cfg:
new_cfg['framework'] = cfg.get('framework', 'pytorch')
if 'task' not in new_cfg:
new_cfg['task'] = cfg.get('task', 'text-generation')
with open(configuration_path, 'w', encoding='utf-8') as f:
json.dump(new_cfg, f, ensure_ascii=False, indent=4)
def _add_adapter_cfg(self, output_dir: str) -> None:
if not hasattr(self, 'sft_args'):
return
sft_args = self.sft_args
if sft_args.sft_type == 'full':
return
configuration_path = os.path.join(output_dir, 'configuration.json')
new_cfg = {}
if os.path.exists(configuration_path):
with open(configuration_path, 'r', encoding='utf-8') as f:
new_cfg = json.load(f)
need_to_save = [
'model_id_or_path', 'model_revision', 'sft_type', 'tuner_backend', 'template_type', 'dtype', 'system'
]
quantization_bit = sft_args.quantization_bit
if quantization_bit > 0:
need_to_save += [
'quantization_bit', 'bnb_4bit_comp_dtype', 'bnb_4bit_quant_type', 'bnb_4bit_use_double_quant'
]
adapter_cfg = {}
for k in need_to_save:
adapter_cfg[k] = getattr(sft_args, k)
new_cfg['adapter_cfg'] = adapter_cfg
with open(configuration_path, 'w', encoding='utf-8') as f:
json.dump(new_cfg, f, ensure_ascii=False, indent=4)
def _save_sft_args(self, output_dir: str) -> None:
sft_args = getattr(self, 'sft_args', None)
if sft_args is None:
return
fpath = os.path.join(output_dir, 'sft_args.json')
with open(fpath, 'w', encoding='utf-8') as f:
json.dump(check_json_format(self.sft_args.__dict__), f, ensure_ascii=False, indent=2)
return
def _save_optimizer_and_scheduler(self, output_dir):
if not (use_torchacc() and self.sft_args.fsdp_num > 1):
return super()._save_optimizer_and_scheduler(output_dir)
ta_save_optimizer_and_scheduler(self.optimizer, self.lr_scheduler, output_dir)
def _load_optimizer_and_scheduler(self, checkpoint):
if not (use_torchacc() and self.sft_args.fsdp_num > 1):
if self._resume_only_model:
checkpoint = self._resume_from_checkpoint
if checkpoint is not None and (is_sagemaker_mp_enabled() or self.is_fsdp_enabled):
self._load_from_checkpoint(checkpoint, self.model_wrapped)
return
else:
# Check if saved optimizer or scheduler states exist
return super()._load_optimizer_and_scheduler(checkpoint)
if checkpoint is None or self.args.save_only_model:
return
self.optimizer, self.lr_scheduler = ta_load_optimizer_and_scheduler(self.optimizer, self.lr_scheduler,
checkpoint, self.args.device)
def _save_tpu(self, output_dir: Optional[str] = None):
if not use_torchacc():
return super()._save_tpu(output_dir)
output_dir = output_dir if output_dir is not None else self.args.output_dir
if self.sft_args.fsdp_num > 1:
save_ta_fsdp_checkpoint(self.model, self.tokenizer, self.args, output_dir)
else:
save_ta_ddp_checkpoint(self.model, self.tokenizer, self.args, output_dir)
def _save(self, output_dir: Optional[str] = None, state_dict=None):
"""Compatible with swift and peft"""
# If we are executing this function, we are the process zero, so we don't check for that.
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
# configuration.json
model_dir = getattr(self.model, 'model_dir', None)
if model_dir is not None:
src_path = os.path.join(model_dir, 'configuration.json')
dst_path = os.path.join(output_dir, 'configuration.json')
if os.path.exists(src_path):
shutil.copy(src_path, dst_path)
else:
self._create_configuration_file(self.model, output_dir)
self._add_adapter_cfg(output_dir)
self._save_sft_args(output_dir)
# generation_config
generation_config = getattr(self.args, 'generation_config', None)
if generation_config is not None:
generation_config.save_pretrained(output_dir)
# model
supported_classes = (SwiftModel, PreTrainedModel, PeftModel)
save_safetensors = self.args.save_safetensors
if not isinstance(self.model, supported_classes):
if state_dict is None:
state_dict = self.model.state_dict()
_unwrap_model = unwrap_model(self.model)
if isinstance(_unwrap_model, supported_classes):
_unwrap_model.save_pretrained(output_dir, state_dict=state_dict, safe_serialization=save_safetensors)
else:
logger.info('Trainer.model is not a `PreTrainedModel`, only saving its state dict.')
if save_safetensors:
safetensors.torch.save_file(state_dict, os.path.join(output_dir, 'model.safetensors'))
else:
torch.save(state_dict, os.path.join(output_dir, 'pytorch_model.bin'))
elif is_instance_of_ms_model(self.model):
PreTrainedModel.save_pretrained(
self.model, output_dir, state_dict=state_dict, safe_serialization=save_safetensors)
else:
self.model.save_pretrained(output_dir, state_dict=state_dict, safe_serialization=save_safetensors)
sft_args = getattr(self, 'sft_args', None)
# tokenizer
if self.tokenizer is not None and sft_args is not None and sft_args.sft_type == 'full':
if hasattr(self.tokenizer, 'processor'):
self.tokenizer.processor.save_pretrained(output_dir)
self.tokenizer.save_pretrained(output_dir)
# training_args.bin
torch.save(self.args, os.path.join(output_dir, 'training_args.bin'))
# additional files
if sft_args is not None and sft_args.sft_type == 'full':
additional_files = getattr(self.args, 'additional_saved_files', None) or [] + ['preprocessor_config.json']
if model_dir is not None:
for file in additional_files:
src_path = os.path.join(model_dir, file)
dst_path = os.path.join(output_dir, file)
if os.path.isfile(src_path):
shutil.copy(src_path, dst_path)
elif os.path.isdir(src_path):
shutil.copytree(src_path, dst_path)
def _save_checkpoint(self, model, trial, metrics=None):
self.state.last_model_checkpoint = os.path.join(self.args.output_dir, f'checkpoint-{self.state.global_step}')
if version.parse(transformers.__version__) >= version.parse('4.36') or not self.args.save_only_model:
result = super()._save_checkpoint(model, trial, metrics)
else:
result = self._save_only_model(model, trial, metrics)
logger.info(f'Saving model checkpoint to {self.state.last_model_checkpoint}')
return result
def _save_only_model(self, model, trial, metrics=None):
# Save model checkpoint
checkpoint_folder = f'{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}'
if self.hp_search_backend is None and trial is None:
self.store_flos()
run_dir = self._get_output_dir(trial=trial)
output_dir = os.path.join(run_dir, checkpoint_folder)
self.save_model(output_dir, _internal_call=True)
# Determine the new best metric / best model checkpoint
if metrics is not None and self.args.metric_for_best_model is not None:
metric_to_check = self.args.metric_for_best_model
if not metric_to_check.startswith('eval_'):
metric_to_check = f'eval_{metric_to_check}'
metric_value = metrics[metric_to_check]
operator = np.greater if self.args.greater_is_better else np.less
if (self.state.best_metric is None or self.state.best_model_checkpoint is None
or operator(metric_value, self.state.best_metric)):
self.state.best_metric = metric_value
self.state.best_model_checkpoint = output_dir
# Save the Trainer state
if self.args.should_save:
self.state.save_to_json(os.path.join(output_dir, TRAINER_STATE_NAME))
# push to hub
if self.args.push_to_hub:
self._push_from_checkpoint(output_dir)
# Maybe delete some older checkpoints.
if self.args.should_save:
self._rotate_checkpoints(use_mtime=True, output_dir=run_dir)
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
train_sampler_random = self.args.train_sampler_random
if train_sampler_random:
return super()._get_train_sampler()
else:
return self._get_eval_sampler(self.train_dataset)
def _load_from_checkpoint(self, resume_from_checkpoint: str, model=None) -> None:
if model is None:
model = self.model
if use_torchacc():
# Loading checkpoint of TorchAcc has been done in tuner.py when
# sft_type is 'full'.
if self.sft_args.fsdp_num > 1:
model = model._get_underlay_model().module.module
if isinstance(model, PreTrainedModel):
return
elif not isinstance(model, SwiftModel):
# Avoid throwing exceptions
return super()._load_from_checkpoint(resume_from_checkpoint, model)
def _sorted_checkpoints(self,
output_dir=None,
checkpoint_prefix=PREFIX_CHECKPOINT_DIR,
use_mtime=False) -> List[str]:
ordering_and_checkpoint_path = []
glob_checkpoints = [str(x) for x in Path(output_dir).glob(f'{checkpoint_prefix}-*') if os.path.isdir(x)]
for path in glob_checkpoints:
if use_mtime:
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
else:
regex_match = re.match(f'.*{checkpoint_prefix}-([0-9]+)', path)
if regex_match is not None and regex_match.groups() is not None:
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
# Make sure we don't delete the best model.
if (self.state.best_model_checkpoint is not None
and str(Path(self.state.best_model_checkpoint)) in checkpoints_sorted):
best_model_index = checkpoints_sorted.index(str(Path(self.state.best_model_checkpoint)))
for i in range(best_model_index, len(checkpoints_sorted) - 2):
checkpoints_sorted[i], checkpoints_sorted[i + 1] = checkpoints_sorted[i + 1], checkpoints_sorted[i]
return checkpoints_sorted
def train(self, resume_from_checkpoint: Optional[Union[str, bool]] = None, *args, **kwargs) -> torch.Tensor:
sft_args = getattr(self, 'sft_args', None)
self._resume_only_model = getattr(sft_args, 'resume_only_model', False)
if self._resume_only_model:
# Control the behavior of "resume_from_checkpoint" by swift.
self._resume_from_checkpoint = resume_from_checkpoint
resume_from_checkpoint = None
if self._resume_from_checkpoint is not None and not is_sagemaker_mp_enabled() and not self.is_fsdp_enabled:
self._load_from_checkpoint(self._resume_from_checkpoint)
res = super().train(resume_from_checkpoint, *args, **kwargs)
self._resume_from_checkpoint = None
if self.max_memory != 0:
self.perf['memory']['cuda'] = f'{self.max_memory:.2f}GiB'
return res
def _load_best_model(self):
# Compatible with transformers>=4.35 (deepspeed)
try:
model = self.model
if isinstance(model, SwiftModel):
logger.info(
f'Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric}).')
adapters = model.adapters
for adapter_name in adapters.keys():
sub_folder = os.path.join(self.state.best_model_checkpoint, adapter_name)
state_dict = SwiftModel.load_state_file(sub_folder, device='cpu')
if state_dict is not None:
self.model.load_state_dict(state_dict, strict=False, adapter_name=adapter_name)
state_dict = SwiftModel.load_state_file(self.state.best_model_checkpoint, device='cpu')
if state_dict is not None:
self.model.load_state_dict(state_dict, strict=False, adapter_name='default')
else:
super()._load_best_model()
except ValueError as e:
logger.warning(e)
def get_max_cuda_memory(self, device: Optional[Union[torch.device, int]] = None) -> float:
if device is None:
mems = [torch.cuda.max_memory_reserved(device=device) for device in range(torch.cuda.device_count())]
else:
mems = [torch.cuda.max_memory_reserved(device=device)]
mem = sum([float(mem) / 1024 / 1024 / 1024 for mem in mems])
if self.max_memory < mem:
self.max_memory = mem
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
return mem
def _maybe_log_save_evaluate(self, tr_loss, *args, **kwargs):
if self.control.should_log:
if use_torchacc():
ta_trim_graph()
self.control.should_log = False
logs: Dict[str, float] = {}
metrics_log = {'loss': tr_loss} # loss first
if hasattr(self, '_custom_metrics'):
metrics_log.update(self._custom_metrics)
self._custom_metrics = {}
for k, v in metrics_log.items():
# all_gather + mean() to get average loss over all processes
v_scalar = self._nested_gather(v).mean().item()
if k == 'loss':
self._total_loss_scalar += v_scalar
logs[k] = round(v_scalar / (self.state.global_step - self._globalstep_last_logged), 8)
if version.parse(transformers.__version__) >= version.parse('4.38'):
grad_norm = args[0]
if isinstance(grad_norm, torch.Tensor):
grad_norm = grad_norm.item()
if grad_norm is not None:
logs['grad_norm'] = grad_norm
logs['learning_rate'] = self._get_learning_rate()
if not is_torch_npu_available():
logs['memory(GiB)'] = round(self.get_max_cuda_memory(), 2)
import time
time_now = time.time()
elapse_time = time_now - self.start_time
logs['train_speed(iter/s)'] = round(self.state.global_step / elapse_time, 6)
tr_loss -= tr_loss
self._globalstep_last_logged = self.state.global_step
self.store_flos()
self.log(logs)
super()._maybe_log_save_evaluate(tr_loss, *args, **kwargs)
def create_optimizer_and_scheduler(self, num_training_steps: int):
if hasattr(self.args, 'galore_config'):
optimizer, lr_scheduler = create_optimizer_and_scheduler(
self.model,
self.args,
self.args.galore_config,
num_training_steps,
lr=self.args.learning_rate,
weight_decay=self.args.weight_decay)
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
else:
self.create_optimizer()
self.create_scheduler(num_training_steps=num_training_steps, optimizer=self.optimizer)
def create_optimizer(self):
opt_model = self.model
if self.optimizer is None:
if version.parse(transformers.__version__) < version.parse('4.34.0'):
logger.warning(f'If you are using lora+, please remember using transformers>=4.34.0, '
f'but now is {transformers.__version__}')
return super().create_optimizer()
optimizer_grouped_parameters = None
if hasattr(self.model, 'create_optimizer_param_groups'):
# Lora+ parameter groups
optimizer_grouped_parameters = self.model.create_optimizer_param_groups(
lr=self.args.learning_rate, weight_decay=self.args.weight_decay)
if optimizer_grouped_parameters is None:
# Default parameter groups
decay_parameters = self.get_decay_parameter_names(opt_model)
optimizer_grouped_parameters = [
{
'params':
[p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad)],
'weight_decay':
self.args.weight_decay,
},
{
'params':
[p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad)],
'weight_decay':
0.0,
},
]
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
return self.optimizer