Skip to content

Commit 7b08b43

Browse files
authored
[SPIR-V] add convergence region analysis (llvm#78456)
This new analysis returns a hierarchical view of the convergence regions in the given function. This will allow our passes to query which basic block belongs to which convergence region, and structurize the code in consequence. Definition ---------- A convergence region is a CFG with: - a single entry node. - one or multiple exit nodes (different from LLVM's regions). - one back-edge - zero or more subregions. Excluding sub-regions nodes, the nodes of a region can only reference a single convergence token. A subregion uses a different convergence token. Algorithm --------- This algorithm assumes all loops are in the Simplify form. Create an initial convergence region for the whole function. - the convergence token is the function entry token. - the entry is the function entrypoint. - Exits are all the basic blocks terminating with a return instruction. Take the function CFG, and process it in DAG order (ignoring back-edges). If a basic block is a loop header: - Create a new region. - The parent region is the parent's loop region if any, otherwise, the top level region. - The region blocks are all the blocks belonging to this loop. - For each loop exit: - visit the rest of the CFG in DAG order (ignore back-edges). - if the region's convergence token is found, add all the blocks dominated by the exit from which the token is reachable to the region. - continue the algorithm with the loop headers successors.
1 parent a768bc6 commit 7b08b43

8 files changed

+1656
-0
lines changed
Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,10 @@
1+
add_llvm_component_library(LLVMSPIRVAnalysis
2+
SPIRVConvergenceRegionAnalysis.cpp
3+
4+
LINK_COMPONENTS
5+
Core
6+
Support
7+
8+
ADD_TO_COMPONENT
9+
SPIRV
10+
)
Lines changed: 350 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,350 @@
1+
//===- ConvergenceRegionAnalysis.h -----------------------------*- C++ -*--===//
2+
//
3+
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4+
// See https://llvm.org/LICENSE.txt for license information.
5+
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6+
//
7+
//===----------------------------------------------------------------------===//
8+
//
9+
// The analysis determines the convergence region for each basic block of
10+
// the module, and provides a tree-like structure describing the region
11+
// hierarchy.
12+
//
13+
//===----------------------------------------------------------------------===//
14+
15+
#include "SPIRVConvergenceRegionAnalysis.h"
16+
#include "llvm/Analysis/LoopInfo.h"
17+
#include "llvm/IR/Dominators.h"
18+
#include "llvm/IR/IntrinsicInst.h"
19+
#include "llvm/InitializePasses.h"
20+
#include "llvm/Transforms/Utils/LoopSimplify.h"
21+
#include <optional>
22+
#include <queue>
23+
24+
#define DEBUG_TYPE "spirv-convergence-region-analysis"
25+
26+
using namespace llvm;
27+
28+
namespace llvm {
29+
void initializeSPIRVConvergenceRegionAnalysisWrapperPassPass(PassRegistry &);
30+
} // namespace llvm
31+
32+
INITIALIZE_PASS_BEGIN(SPIRVConvergenceRegionAnalysisWrapperPass,
33+
"convergence-region",
34+
"SPIRV convergence regions analysis", true, true)
35+
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
36+
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
37+
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
38+
INITIALIZE_PASS_END(SPIRVConvergenceRegionAnalysisWrapperPass,
39+
"convergence-region", "SPIRV convergence regions analysis",
40+
true, true)
41+
42+
namespace llvm {
43+
namespace SPIRV {
44+
namespace {
45+
46+
template <typename BasicBlockType, typename IntrinsicInstType>
47+
std::optional<IntrinsicInstType *>
48+
getConvergenceTokenInternal(BasicBlockType *BB) {
49+
static_assert(std::is_const_v<IntrinsicInstType> ==
50+
std::is_const_v<BasicBlockType>,
51+
"Constness must match between input and output.");
52+
static_assert(std::is_same_v<BasicBlock, std::remove_const_t<BasicBlockType>>,
53+
"Input must be a basic block.");
54+
static_assert(
55+
std::is_same_v<IntrinsicInst, std::remove_const_t<IntrinsicInstType>>,
56+
"Output type must be an intrinsic instruction.");
57+
58+
for (auto &I : *BB) {
59+
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
60+
switch (II->getIntrinsicID()) {
61+
case Intrinsic::experimental_convergence_entry:
62+
case Intrinsic::experimental_convergence_loop:
63+
return II;
64+
case Intrinsic::experimental_convergence_anchor: {
65+
auto Bundle = II->getOperandBundle(LLVMContext::OB_convergencectrl);
66+
assert(Bundle->Inputs.size() == 1 &&
67+
Bundle->Inputs[0]->getType()->isTokenTy());
68+
auto TII = dyn_cast<IntrinsicInst>(Bundle->Inputs[0].get());
69+
assert(TII != nullptr);
70+
return TII;
71+
}
72+
}
73+
}
74+
75+
if (auto *CI = dyn_cast<CallInst>(&I)) {
76+
auto OB = CI->getOperandBundle(LLVMContext::OB_convergencectrl);
77+
if (!OB.has_value())
78+
continue;
79+
return dyn_cast<IntrinsicInst>(OB.value().Inputs[0]);
80+
}
81+
}
82+
83+
return std::nullopt;
84+
}
85+
86+
// Given a ConvergenceRegion tree with |Start| as its root, finds the smallest
87+
// region |Entry| belongs to. If |Entry| does not belong to the region defined
88+
// by |Start|, this function returns |nullptr|.
89+
ConvergenceRegion *findParentRegion(ConvergenceRegion *Start,
90+
BasicBlock *Entry) {
91+
ConvergenceRegion *Candidate = nullptr;
92+
ConvergenceRegion *NextCandidate = Start;
93+
94+
while (Candidate != NextCandidate && NextCandidate != nullptr) {
95+
Candidate = NextCandidate;
96+
NextCandidate = nullptr;
97+
98+
// End of the search, we can return.
99+
if (Candidate->Children.size() == 0)
100+
return Candidate;
101+
102+
for (auto *Child : Candidate->Children) {
103+
if (Child->Blocks.count(Entry) != 0) {
104+
NextCandidate = Child;
105+
break;
106+
}
107+
}
108+
}
109+
110+
return Candidate;
111+
}
112+
113+
} // anonymous namespace
114+
115+
std::optional<IntrinsicInst *> getConvergenceToken(BasicBlock *BB) {
116+
return getConvergenceTokenInternal<BasicBlock, IntrinsicInst>(BB);
117+
}
118+
119+
std::optional<const IntrinsicInst *> getConvergenceToken(const BasicBlock *BB) {
120+
return getConvergenceTokenInternal<const BasicBlock, const IntrinsicInst>(BB);
121+
}
122+
123+
ConvergenceRegion::ConvergenceRegion(DominatorTree &DT, LoopInfo &LI,
124+
Function &F)
125+
: DT(DT), LI(LI), Parent(nullptr) {
126+
Entry = &F.getEntryBlock();
127+
ConvergenceToken = getConvergenceToken(Entry);
128+
for (auto &B : F) {
129+
Blocks.insert(&B);
130+
if (isa<ReturnInst>(B.getTerminator()))
131+
Exits.insert(&B);
132+
}
133+
}
134+
135+
ConvergenceRegion::ConvergenceRegion(
136+
DominatorTree &DT, LoopInfo &LI,
137+
std::optional<IntrinsicInst *> ConvergenceToken, BasicBlock *Entry,
138+
SmallPtrSet<BasicBlock *, 8> &&Blocks, SmallPtrSet<BasicBlock *, 2> &&Exits)
139+
: DT(DT), LI(LI), ConvergenceToken(ConvergenceToken), Entry(Entry),
140+
Exits(std::move(Exits)), Blocks(std::move(Blocks)) {
141+
for (auto *BB : this->Exits)
142+
assert(this->Blocks.count(BB) != 0);
143+
assert(this->Blocks.count(this->Entry) != 0);
144+
}
145+
146+
void ConvergenceRegion::releaseMemory() {
147+
// Parent memory is owned by the parent.
148+
Parent = nullptr;
149+
for (auto *Child : Children) {
150+
Child->releaseMemory();
151+
delete Child;
152+
}
153+
Children.resize(0);
154+
}
155+
156+
void ConvergenceRegion::dump(const unsigned IndentSize) const {
157+
const std::string Indent(IndentSize, '\t');
158+
dbgs() << Indent << this << ": {\n";
159+
dbgs() << Indent << " Parent: " << Parent << "\n";
160+
161+
if (ConvergenceToken.value_or(nullptr)) {
162+
dbgs() << Indent
163+
<< " ConvergenceToken: " << ConvergenceToken.value()->getName()
164+
<< "\n";
165+
}
166+
167+
if (Entry->getName() != "")
168+
dbgs() << Indent << " Entry: " << Entry->getName() << "\n";
169+
else
170+
dbgs() << Indent << " Entry: " << Entry << "\n";
171+
172+
dbgs() << Indent << " Exits: { ";
173+
for (const auto &Exit : Exits) {
174+
if (Exit->getName() != "")
175+
dbgs() << Exit->getName() << ", ";
176+
else
177+
dbgs() << Exit << ", ";
178+
}
179+
dbgs() << " }\n";
180+
181+
dbgs() << Indent << " Blocks: { ";
182+
for (const auto &Block : Blocks) {
183+
if (Block->getName() != "")
184+
dbgs() << Block->getName() << ", ";
185+
else
186+
dbgs() << Block << ", ";
187+
}
188+
dbgs() << " }\n";
189+
190+
dbgs() << Indent << " Children: {\n";
191+
for (const auto Child : Children)
192+
Child->dump(IndentSize + 2);
193+
dbgs() << Indent << " }\n";
194+
195+
dbgs() << Indent << "}\n";
196+
}
197+
198+
class ConvergenceRegionAnalyzer {
199+
200+
public:
201+
ConvergenceRegionAnalyzer(Function &F, DominatorTree &DT, LoopInfo &LI)
202+
: DT(DT), LI(LI), F(F) {}
203+
204+
private:
205+
bool isBackEdge(const BasicBlock *From, const BasicBlock *To) const {
206+
assert(From != To && "From == To. This is awkward.");
207+
208+
// We only handle loop in the simplified form. This means:
209+
// - a single back-edge, a single latch.
210+
// - meaning the back-edge target can only be the loop header.
211+
// - meaning the From can only be the loop latch.
212+
if (!LI.isLoopHeader(To))
213+
return false;
214+
215+
auto *L = LI.getLoopFor(To);
216+
if (L->contains(From) && L->isLoopLatch(From))
217+
return true;
218+
219+
return false;
220+
}
221+
222+
std::unordered_set<BasicBlock *>
223+
findPathsToMatch(LoopInfo &LI, BasicBlock *From,
224+
std::function<bool(const BasicBlock *)> isMatch) const {
225+
std::unordered_set<BasicBlock *> Output;
226+
227+
if (isMatch(From))
228+
Output.insert(From);
229+
230+
auto *Terminator = From->getTerminator();
231+
for (unsigned i = 0; i < Terminator->getNumSuccessors(); ++i) {
232+
auto *To = Terminator->getSuccessor(i);
233+
if (isBackEdge(From, To))
234+
continue;
235+
236+
auto ChildSet = findPathsToMatch(LI, To, isMatch);
237+
if (ChildSet.size() == 0)
238+
continue;
239+
240+
Output.insert(ChildSet.begin(), ChildSet.end());
241+
Output.insert(From);
242+
if (LI.isLoopHeader(From)) {
243+
auto *L = LI.getLoopFor(From);
244+
for (auto *BB : L->getBlocks()) {
245+
Output.insert(BB);
246+
}
247+
}
248+
}
249+
250+
return Output;
251+
}
252+
253+
SmallPtrSet<BasicBlock *, 2>
254+
findExitNodes(const SmallPtrSetImpl<BasicBlock *> &RegionBlocks) {
255+
SmallPtrSet<BasicBlock *, 2> Exits;
256+
257+
for (auto *B : RegionBlocks) {
258+
auto *Terminator = B->getTerminator();
259+
for (unsigned i = 0; i < Terminator->getNumSuccessors(); ++i) {
260+
auto *Child = Terminator->getSuccessor(i);
261+
if (RegionBlocks.count(Child) == 0)
262+
Exits.insert(B);
263+
}
264+
}
265+
266+
return Exits;
267+
}
268+
269+
public:
270+
ConvergenceRegionInfo analyze() {
271+
ConvergenceRegion *TopLevelRegion = new ConvergenceRegion(DT, LI, F);
272+
std::queue<Loop *> ToProcess;
273+
for (auto *L : LI.getLoopsInPreorder())
274+
ToProcess.push(L);
275+
276+
while (ToProcess.size() != 0) {
277+
auto *L = ToProcess.front();
278+
ToProcess.pop();
279+
assert(L->isLoopSimplifyForm());
280+
281+
auto CT = getConvergenceToken(L->getHeader());
282+
SmallPtrSet<BasicBlock *, 8> RegionBlocks(L->block_begin(),
283+
L->block_end());
284+
SmallVector<BasicBlock *> LoopExits;
285+
L->getExitingBlocks(LoopExits);
286+
if (CT.has_value()) {
287+
for (auto *Exit : LoopExits) {
288+
auto N = findPathsToMatch(LI, Exit, [&CT](const BasicBlock *block) {
289+
auto Token = getConvergenceToken(block);
290+
if (Token == std::nullopt)
291+
return false;
292+
return Token.value() == CT.value();
293+
});
294+
RegionBlocks.insert(N.begin(), N.end());
295+
}
296+
}
297+
298+
auto RegionExits = findExitNodes(RegionBlocks);
299+
ConvergenceRegion *Region = new ConvergenceRegion(
300+
DT, LI, CT, L->getHeader(), std::move(RegionBlocks),
301+
std::move(RegionExits));
302+
Region->Parent = findParentRegion(TopLevelRegion, Region->Entry);
303+
assert(Region->Parent != nullptr && "This is impossible.");
304+
Region->Parent->Children.push_back(Region);
305+
}
306+
307+
return ConvergenceRegionInfo(TopLevelRegion);
308+
}
309+
310+
private:
311+
DominatorTree &DT;
312+
LoopInfo &LI;
313+
Function &F;
314+
};
315+
316+
ConvergenceRegionInfo getConvergenceRegions(Function &F, DominatorTree &DT,
317+
LoopInfo &LI) {
318+
ConvergenceRegionAnalyzer Analyzer(F, DT, LI);
319+
return Analyzer.analyze();
320+
}
321+
322+
} // namespace SPIRV
323+
324+
char SPIRVConvergenceRegionAnalysisWrapperPass::ID = 0;
325+
326+
SPIRVConvergenceRegionAnalysisWrapperPass::
327+
SPIRVConvergenceRegionAnalysisWrapperPass()
328+
: FunctionPass(ID) {}
329+
330+
bool SPIRVConvergenceRegionAnalysisWrapperPass::runOnFunction(Function &F) {
331+
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
332+
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
333+
334+
CRI = SPIRV::getConvergenceRegions(F, DT, LI);
335+
// Nothing was modified.
336+
return false;
337+
}
338+
339+
SPIRVConvergenceRegionAnalysis::Result
340+
SPIRVConvergenceRegionAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
341+
Result CRI;
342+
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
343+
auto &LI = AM.getResult<LoopAnalysis>(F);
344+
CRI = SPIRV::getConvergenceRegions(F, DT, LI);
345+
return CRI;
346+
}
347+
348+
AnalysisKey SPIRVConvergenceRegionAnalysis::Key;
349+
350+
} // namespace llvm

0 commit comments

Comments
 (0)