-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsp_dec.c
6378 lines (5701 loc) · 151 KB
/
sp_dec.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* ===================================================================
* TS 26.104
* REL-5 V5.4.0 2004-03
* REL-6 V6.1.0 2004-03
* REL-15 V15.1.0 2018-07
* 3GPP AMR Floating-point Speech Codec
* ===================================================================
*
*/
/*
* sp_dec.c
*
*
* Project:
* AMR Floating-Point Codec
*
* Contains:
* This module contains all the functions needed decoding AMR
* encoder parameters to 16-bit speech samples
*
*/
/*
* include files
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "sp_dec.h"
#include "rom_dec.h"
/*
* Declare structure types
*/
enum DTXStateType
{
SPEECH = 0,
DTX,
DTX_MUTE
};
/*
* Decoder memory structure
*/
typedef struct
{
/* history vector of past synthesis speech energy */
Word32 frameEnergyHist[L_ENERGYHIST];
/* state flags */
Word16 bgHangover; /* counter; number of frames after last speech frame */
} Bgn_scdState;
typedef struct
{
Word32 hangCount; /* counter; */
/* history vector of past synthesis speech energy */
Word32 cbGainHistory[L_CBGAINHIST];
Word16 hangVar; /* counter; */
} Cb_gain_averageState;
typedef struct
{
Word32 lsp_meanSave[M]; /* Averaged LSPs saved for efficiency */
} lsp_avgState;
typedef struct
{
Word32 past_r_q[M]; /* Past quantized prediction error, Q15 */
Word32 past_lsf_q[M]; /* Past dequantized lsfs, Q15 */
} D_plsfState;
typedef struct
{
Word32 pbuf[5];
Word32 past_gain_pit;
Word32 prev_gp;
} ec_gain_pitchState;
typedef struct
{
Word32 gbuf[5];
Word32 past_gain_code;
Word32 prev_gc;
} ec_gain_codeState;
typedef struct
{
/*
* normal MA predictor memory, Q10
* (contains 20*log10(quaErr))
*/
Word32 past_qua_en[4];
/*
* MA predictor memory for MR122 mode, Q10
* (contains log2(quaErr))
*/
Word32 past_qua_en_MR122[4];
} gc_predState;
typedef struct
{
Word32 gainMem[PHDGAINMEMSIZE];
Word32 prevCbGain;
Word32 prevState;
Word16 lockFull;
Word16 onset;
} ph_dispState;
typedef struct
{
enum DTXStateType dtxGlobalState; /* contains previous state */
Word32 log_en;
Word32 old_log_en;
Word32 pn_seed_rx;
Word32 lsp[M];
Word32 lsp_old[M];
Word32 lsf_hist[M * DTX_HIST_SIZE];
Word32 lsf_hist_mean[M * DTX_HIST_SIZE];
Word32 log_en_hist[DTX_HIST_SIZE];
Word32 true_sid_period_inv;
Word16 since_last_sid;
Word16 lsf_hist_ptr;
Word16 log_pg_mean;
Word16 log_en_hist_ptr;
Word16 log_en_adjust;
Word16 dtxHangoverCount;
Word16 decAnaElapsedCount;
Word16 sid_frame;
Word16 valid_data;
Word16 dtxHangoverAdded;
/* updated in main decoder */
Word16 data_updated; /* marker to know if CNI data is ever renewed */
} dtx_decState;
typedef struct
{
Word32 past_gain;
} agcState;
typedef struct
{
/* Excitation vector */
Word32 old_exc[L_SUBFR + PIT_MAX + L_INTERPOL];
Word32 *exc;
Word32 lsp_old[M];
/* Filter's memory */
Word32 mem_syn[M];
/* pitch sharpening */
Word32 sharp;
Word32 old_T0;
/* Variable holding received ltpLag, used in background noise and BFI */
Word32 T0_lagBuff;
/* Variables for the source characteristic detector (SCD) */
Word32 inBackgroundNoise;
Word32 voicedHangover;
Word32 ltpGainHistory[9];
/* Memories for bad frame handling */
Word32 excEnergyHist[9];
Word16 prev_bf;
Word16 prev_pdf;
Word16 state;
Word16 nodataSeed;
Bgn_scdState *background_state;
Cb_gain_averageState *Cb_gain_averState;
lsp_avgState *lsp_avg_st;
D_plsfState *lsfState;
ec_gain_pitchState *ec_gain_p_st;
ec_gain_codeState *ec_gain_c_st;
gc_predState *pred_state;
ph_dispState *ph_disp_st;
dtx_decState *dtxDecoderState;
} Decoder_amrState;
typedef struct
{
Word32 res2[L_SUBFR];
Word32 mem_syn_pst[M];
Word32 synth_buf[M + L_FRAME];
Word32 preemph_state_mem_pre;
agcState *agc_state;
} Post_FilterState;
typedef struct
{
Word32 y2_hi;
Word32 y2_lo;
Word32 y1_hi;
Word32 y1_lo;
Word32 x0;
Word32 x1;
} Post_ProcessState;
typedef struct
{
Decoder_amrState *decoder_amrState;
Post_FilterState *post_state;
Post_ProcessState *postHP_state;
} Speech_Decode_FrameState;
/*
* CodAmrReset
*
*
* Parameters:
* state B: state structure
* mode I: AMR mode
*
* Function:
* Resets state memory
*
* Returns:
* void
*/
static void Decoder_amr_reset(Decoder_amrState *state, enum Mode mode)
{
Word32 i;
/* Cb_gain_average_reset */
memset(state->Cb_gain_averState->cbGainHistory, 0, sizeof(Word32) * L_CBGAINHIST);
state->Cb_gain_averState->hangVar = 0;
state->Cb_gain_averState->hangCount = 0;
/* Initialize static pointer */
state->exc = state->old_exc + PIT_MAX + L_INTERPOL;
/* Static vectors to zero */
memset(state->old_exc, 0, sizeof(Word32) * (PIT_MAX + L_INTERPOL));
if (mode != MRDTX)
memset(state->mem_syn, 0, sizeof(Word32) * M);
/* initialize pitch sharpening */
state->sharp = SHARPMIN;
state->old_T0 = 40;
/* Initialize state->lsp_old [] */
if (mode != MRDTX)
{
state->lsp_old[0] = 30000;
state->lsp_old[1] = 26000;
state->lsp_old[2] = 21000;
state->lsp_old[3] = 15000;
state->lsp_old[4] = 8000;
state->lsp_old[5] = 0;
state->lsp_old[6] = -8000;
state->lsp_old[7] = -15000;
state->lsp_old[8] = -21000;
state->lsp_old[9] = -26000;
}
/* Initialize memories of bad frame handling */
state->prev_bf = 0;
state->prev_pdf = 0;
state->state = 0;
state->T0_lagBuff = 40;
state->inBackgroundNoise = 0;
state->voicedHangover = 0;
if (mode != MRDTX)
memset(state->excEnergyHist, 0, sizeof(Word32) * 9);
memset(state->ltpGainHistory, 0, sizeof(Word32) * 9);
if (mode != MRDTX)
{
state->lsp_avg_st->lsp_meanSave[0] = 1384;
state->lsp_avg_st->lsp_meanSave[1] = 2077;
state->lsp_avg_st->lsp_meanSave[2] = 3420;
state->lsp_avg_st->lsp_meanSave[3] = 5108;
state->lsp_avg_st->lsp_meanSave[4] = 6742;
state->lsp_avg_st->lsp_meanSave[5] = 8122;
state->lsp_avg_st->lsp_meanSave[6] = 9863;
state->lsp_avg_st->lsp_meanSave[7] = 11092;
state->lsp_avg_st->lsp_meanSave[8] = 12714;
state->lsp_avg_st->lsp_meanSave[9] = 13701;
}
memset(state->lsfState->past_r_q, 0, sizeof(Word32) * M);
/* Past dequantized lsfs */
state->lsfState->past_lsf_q[0] = 1384;
state->lsfState->past_lsf_q[1] = 2077;
state->lsfState->past_lsf_q[2] = 3420;
state->lsfState->past_lsf_q[3] = 5108;
state->lsfState->past_lsf_q[4] = 6742;
state->lsfState->past_lsf_q[5] = 8122;
state->lsfState->past_lsf_q[6] = 9863;
state->lsfState->past_lsf_q[7] = 11092;
state->lsfState->past_lsf_q[8] = 12714;
state->lsfState->past_lsf_q[9] = 13701;
for (i = 0; i < 5; i++)
state->ec_gain_p_st->pbuf[i] = 1640;
state->ec_gain_p_st->past_gain_pit = 0;
state->ec_gain_p_st->prev_gp = 16384;
for (i = 0; i < 5; i++)
state->ec_gain_c_st->gbuf[i] = 1;
state->ec_gain_c_st->past_gain_code = 0;
state->ec_gain_c_st->prev_gc = 1;
if (mode != MRDTX)
{
for (i = 0; i < NPRED; i++)
{
state->pred_state->past_qua_en[i] = MIN_ENERGY;
state->pred_state->past_qua_en_MR122[i] = MIN_ENERGY_MR122;
}
}
state->nodataSeed = 21845;
/* Static vectors to zero */
memset(state->background_state->frameEnergyHist, 0, sizeof(Word32) * L_ENERGYHIST);
/* Initialize hangover handling */
state->background_state->bgHangover = 0;
/* phDispReset */
memset(state->ph_disp_st->gainMem, 0, sizeof(Word32) * PHDGAINMEMSIZE);
state->ph_disp_st->prevState = 0;
state->ph_disp_st->prevCbGain = 0;
state->ph_disp_st->lockFull = 0;
state->ph_disp_st->onset = 0; /* assume no onset in start */
if (mode != MRDTX)
{
state->dtxDecoderState->since_last_sid = 0;
state->dtxDecoderState->true_sid_period_inv = 8192;
state->dtxDecoderState->log_en = 3500;
state->dtxDecoderState->old_log_en = 3500;
/* low level noise for better performance in DTX handover cases*/
state->dtxDecoderState->pn_seed_rx = PN_INITIAL_SEED;
/* Initialize state->lsp [] */
state->dtxDecoderState->lsp[0] = 30000;
state->dtxDecoderState->lsp[1] = 26000;
state->dtxDecoderState->lsp[2] = 21000;
state->dtxDecoderState->lsp[3] = 15000;
state->dtxDecoderState->lsp[4] = 8000;
state->dtxDecoderState->lsp[5] = 0;
state->dtxDecoderState->lsp[6] = -8000;
state->dtxDecoderState->lsp[7] = -15000;
state->dtxDecoderState->lsp[8] = -21000;
state->dtxDecoderState->lsp[9] = -26000;
/* Initialize state->lsp_old [] */
state->dtxDecoderState->lsp_old[0] = 30000;
state->dtxDecoderState->lsp_old[1] = 26000;
state->dtxDecoderState->lsp_old[2] = 21000;
state->dtxDecoderState->lsp_old[3] = 15000;
state->dtxDecoderState->lsp_old[4] = 8000;
state->dtxDecoderState->lsp_old[5] = 0;
state->dtxDecoderState->lsp_old[6] = -8000;
state->dtxDecoderState->lsp_old[7] = -15000;
state->dtxDecoderState->lsp_old[8] = -21000;
state->dtxDecoderState->lsp_old[9] = -26000;
state->dtxDecoderState->lsf_hist_ptr = 0;
state->dtxDecoderState->log_pg_mean = 0;
state->dtxDecoderState->log_en_hist_ptr = 0;
/* initialize decoder lsf history */
state->dtxDecoderState->lsf_hist[0] = 1384;
state->dtxDecoderState->lsf_hist[1] = 2077;
state->dtxDecoderState->lsf_hist[2] = 3420;
state->dtxDecoderState->lsf_hist[3] = 5108;
state->dtxDecoderState->lsf_hist[4] = 6742;
state->dtxDecoderState->lsf_hist[5] = 8122;
state->dtxDecoderState->lsf_hist[6] = 9863;
state->dtxDecoderState->lsf_hist[7] = 11092;
state->dtxDecoderState->lsf_hist[8] = 12714;
state->dtxDecoderState->lsf_hist[9] = 13701;
for (i = 1; i < DTX_HIST_SIZE; i++)
{
memcpy(&state->dtxDecoderState->lsf_hist[M * i], &state->dtxDecoderState->lsf_hist[0], sizeof(Word32) * M);
}
memset(state->dtxDecoderState->lsf_hist_mean, 0, sizeof(Word32) * M * DTX_HIST_SIZE);
/* initialize decoder log frame energy */
for (i = 0; i < DTX_HIST_SIZE; i++)
{
state->dtxDecoderState->log_en_hist[i] = state->dtxDecoderState->log_en;
}
state->dtxDecoderState->log_en_adjust = 0;
state->dtxDecoderState->dtxHangoverCount = DTX_HANG_CONST;
state->dtxDecoderState->decAnaElapsedCount = 31;
state->dtxDecoderState->sid_frame = 0;
state->dtxDecoderState->valid_data = 0;
state->dtxDecoderState->dtxHangoverAdded = 0;
state->dtxDecoderState->dtxGlobalState = DTX;
state->dtxDecoderState->data_updated = 0;
}
return;
}
/*
* rx_dtx_handler
*
*
* Parameters:
* st->dtxGlobalState I: DTX state
* st->since_last_sid B: Frames after last SID frame
* st->data_updated I: SID update flag
* st->decAnaElapsedCount B: state machine that synch with the GSMEFR txDtx machine
* st->dtxHangoverAdded B: DTX hangover
* st->sid_frame O: SID frame indicator
* st->valid_data O: Vaild data indicator
* frame_type O: Frame type
*
* Function:
* Find the new DTX state
*
* Returns:
* DTXStateType DTX, DTX_MUTE or SPEECH
*/
static enum DTXStateType rx_dtx_handler(dtx_decState *st, enum RXFrameType frame_type)
{
enum DTXStateType newState;
enum DTXStateType encState;
/* DTX if SID frame or previously in DTX{_MUTE} and (NO_RX OR BAD_SPEECH) */
if (table_SID[frame_type] | ((st->dtxGlobalState != SPEECH) &
table_speech_bad[frame_type]))
{
newState = DTX;
/* stay in mute for these input types */
if ((st->dtxGlobalState == DTX_MUTE) & table_mute[frame_type])
{
newState = DTX_MUTE;
}
/*
* evaluate if noise parameters are too old
* since_last_sid is reset when CN parameters have been updated
*/
st->since_last_sid += 1;
/* no update of sid parameters in DTX for a long while */
if ((frame_type != RX_SID_UPDATE) & (st->since_last_sid > DTX_MAX_EMPTY_THRESH))
{
newState = DTX_MUTE;
}
}
else
{
newState = SPEECH;
st->since_last_sid = 0;
}
/*
* reset the decAnaElapsed Counter when receiving CNI data the first
* time, to robustify counter missmatch after handover
* this might delay the bwd CNI analysis in the new decoder slightly.
*/
if ((st->data_updated == 0) & (frame_type == RX_SID_UPDATE))
{
st->decAnaElapsedCount = 0;
}
/*
* update the SPE-SPD DTX hangover synchronization
* to know when SPE has added dtx hangover
*/
st->decAnaElapsedCount += 1;
st->dtxHangoverAdded = 0;
encState = SPEECH;
if (table_DTX[frame_type])
{
encState = DTX;
if ((frame_type == RX_NO_DATA) & (newState == SPEECH))
{
encState = SPEECH;
}
}
if (encState == SPEECH)
{
st->dtxHangoverCount = DTX_HANG_CONST;
}
else
{
if (st->decAnaElapsedCount > DTX_ELAPSED_FRAMES_THRESH)
{
st->dtxHangoverAdded = 1;
st->decAnaElapsedCount = 0;
st->dtxHangoverCount = 0;
}
else if (st->dtxHangoverCount == 0)
{
st->decAnaElapsedCount = 0;
}
else
{
st->dtxHangoverCount -= 1;
}
}
if (newState != SPEECH)
{
/*
* DTX or DTX_MUTE
* CN data is not in a first SID, first SIDs are marked as SID_BAD
* but will do backwards analysis if a hangover period has been added
* according to the state machine above
*/
st->sid_frame = 0;
st->valid_data = 0;
if (frame_type == RX_SID_FIRST)
{
st->sid_frame = 1;
}
else if (frame_type == RX_SID_UPDATE)
{
st->sid_frame = 1;
st->valid_data = 1;
}
else if (frame_type == RX_SID_BAD)
{
st->sid_frame = 1;
/* use old data */
st->dtxHangoverAdded = 0;
}
}
/* newState is used by both SPEECH AND DTX synthesis routines */
return newState;
}
/*
* Lsf_lsp
*
*
* Parameters:
* lsf I: vector of LSFs
* lsp O: vector of LSPs
*
* Function:
* Transformation lsf to lsp, order M
*
* Returns:
* void
*/
static void Lsf_lsp(Word32 lsf[], Word32 lsp[])
{
Word32 i, ind, offset, tmp;
for (i = 0; i < M; i++)
{
/* ind = b8-b15 of lsf[i] */
ind = lsf[i] >> 8;
/* offset = b0-b7 of lsf[i] */
offset = lsf[i] & 0x00ff;
/* lsp[i] = table[ind]+ ((table[ind+1]-table[ind])*offset) / 256 */
tmp = ((cos_table[ind + 1] - cos_table[ind]) * offset) << 1;
lsp[i] = cos_table[ind] + (tmp >> 9);
}
return;
}
/*
* D_plsf_3
*
*
* Parameters:
* st->past_lsf_q I: Past dequantized LFSs
* st->past_r_q B: past quantized residual
* mode I: AMR mode
* bfi B: bad frame indicator
* indice I: quantization indices of 3 submatrices, Q0
* lsp1_q O: quantized 1st LSP vector
*
* Function:
* Decodes the LSP parameters using the received quantization indices.
* 1st order MA prediction and split by 3 vector quantization (split-VQ)
*
* Returns:
* void
*/
static void D_plsf_3(D_plsfState *st, enum Mode mode, Word16 bfi, Word16 *indice, Word32 *lsp1_q)
{
Word32 lsf1_r[M], lsf1_q[M];
Word32 i, index, temp;
const Word32 *p_cb1, *p_cb2, *p_cb3, *p_dico;
/* if bad frame */
if (bfi != 0)
{
/* use the past LSFs slightly shifted towards their mean */
for (i = 0; i < M; i++)
{
/* lsfi_q[i] = ALPHA*past_lsf_q[i] + ONE_ALPHA*meanLsf[i]; */
lsf1_q[i] = ((st->past_lsf_q[i] * ALPHA) >> 15) + ((mean_lsf_3[i] * ONE_ALPHA) >> 15);
}
/* estimate past quantized residual to be used in next frame */
if (mode != MRDTX)
{
for (i = 0; i < M; i++)
{
/* temp = meanLsf[i] + pastR2_q[i] * pred_fac; */
temp = mean_lsf_3[i] + ((st->past_r_q[i] * pred_fac[i]) >> 15);
st->past_r_q[i] = lsf1_q[i] - temp;
}
}
else
{
for (i = 0; i < M; i++)
{
/* temp = meanLsf[i] + pastR2_q[i]; */
temp = mean_lsf_3[i] + st->past_r_q[i];
st->past_r_q[i] = lsf1_q[i] - temp;
}
}
}
/* if good LSFs received */
else
{
if ((mode == MR475) | (mode == MR515))
{
/* MR475, MR515 */
p_cb1 = dico1_lsf_3;
p_cb2 = dico2_lsf_3;
p_cb3 = mr515_3_lsf;
}
else if (mode == MR795)
{
/* MR795 */
p_cb1 = mr795_1_lsf;
p_cb2 = dico2_lsf_3;
p_cb3 = dico3_lsf_3;
}
else
{
/* MR59, MR67, MR74, MR102, MRDTX */
p_cb1 = dico1_lsf_3;
p_cb2 = dico2_lsf_3;
p_cb3 = dico3_lsf_3;
}
/* decode prediction residuals from 3 received indices */
index = *indice++;
p_dico = &p_cb1[index + index + index];
index = *indice++;
lsf1_r[0] = *p_dico++;
lsf1_r[1] = *p_dico++;
lsf1_r[2] = *p_dico++;
if ((mode == MR475) | (mode == MR515))
{
/* MR475, MR515 only using every second entry */
index = index << 1;
}
p_dico = &p_cb2[index + index + index];
index = *indice++;
lsf1_r[3] = *p_dico++;
lsf1_r[4] = *p_dico++;
lsf1_r[5] = *p_dico++;
p_dico = &p_cb3[index << 2];
lsf1_r[6] = *p_dico++;
lsf1_r[7] = *p_dico++;
lsf1_r[8] = *p_dico++;
lsf1_r[9] = *p_dico++;
/* Compute quantized LSFs and update the past quantized residual */
if (mode != MRDTX)
{
for (i = 0; i < M; i++)
{
lsf1_q[i] = lsf1_r[i] + (mean_lsf_3[i] + ((st->past_r_q[i] *
pred_fac[i]) >>
15));
}
memcpy(st->past_r_q, lsf1_r, sizeof(Word32) * M);
}
else
{
for (i = 0; i < M; i++)
{
lsf1_q[i] = lsf1_r[i] + (mean_lsf_3[i] + st->past_r_q[i]);
}
memcpy(st->past_r_q, lsf1_r, sizeof(Word32) * M);
}
}
/* verification that LSFs has minimum distance of LSF_GAP Hz */
temp = LSF_GAP;
for (i = 0; i < M; i++)
{
if (lsf1_q[i] < temp)
{
lsf1_q[i] = temp;
}
temp = lsf1_q[i] + LSF_GAP;
}
memcpy(st->past_lsf_q, lsf1_q, sizeof(Word32) * M);
/* convert LSFs to the cosine domain */
Lsf_lsp(lsf1_q, lsp1_q);
return;
}
/*
* pseudonoise
*
*
* Parameters:
* shift_reg B: Old CN generator shift register state
* no_bits I: Number of bits
*
* Function:
* pseudonoise
*
* Returns:
* noise_bits
*/
static Word32 pseudonoise(Word32 *shift_reg, Word32 no_bits)
{
Word32 noise_bits, Sn, i;
Word32 s_reg;
s_reg = *shift_reg;
noise_bits = 0;
for (i = 0; i < no_bits; i++)
{
/* State n == 31 */
Sn = s_reg & 0x00000001L;
/* State n == 3 */
if (s_reg & 0x10000000L)
{
Sn = Sn ^ 0x1L;
}
else
{
Sn = Sn ^ 0x0L;
}
noise_bits = (noise_bits << 1) | (s_reg & 1);
s_reg = s_reg >> 1;
if (Sn & 1)
{
s_reg = s_reg | 0x40000000L;
}
}
*shift_reg = s_reg;
return noise_bits;
}
/*
* Lsp_lsf
*
*
* Parameters:
* lsp I: LSP vector (range: -1<=val<1)
* lsf O: LSF vector Old CN generator shift register state
*
* Function:
* Transformation lsp to lsf, LPC order M
* lsf[i] = arccos(lsp[i])/(2*pi)
*
* Returns:
* void
*/
static void Lsp_lsf(Word32 lsp[], Word32 lsf[])
{
Word32 i, ind = 63; /* begin at end of table -1 */
for (i = M - 1; i >= 0; i--)
{
/* find value in table that is just greater than lsp[i] */
while (cos_table[ind] < lsp[i])
{
ind--;
}
lsf[i] = ((((lsp[i] - cos_table[ind]) * acos_slope[ind]) + 0x800) >> 12) + (ind << 8);
}
return;
}
/*
* Reorder_lsf
*
*
* Parameters:
* lsf B: vector of LSFs (range: 0<=val<=0.5)
* min_dist I: minimum required distance
*
* Function:
* Make sure that the LSFs are properly ordered and to keep a certain minimum
* distance between adjacent LSFs. LPC order = M.
*
* Returns:
* void
*/
static void Reorder_lsf(Word32 *lsf, Word32 min_dist)
{
Word32 lsf_min, i;
lsf_min = min_dist;
for (i = 0; i < M; i++)
{
if (lsf[i] < lsf_min)
{
lsf[i] = lsf_min;
}
lsf_min = lsf[i] + min_dist;
}
}
/* VC5.0 Global optimization does not work with this function */
#if _MSC_VER == 1100
#pragma optimize("g", off)
#endif
/*
* Get_lsp_pol
*
*
* Parameters:
* lsp I: line spectral frequencies
* f O: polynomial F1(z) or F2(z)
*
* Function:
* Find the polynomial F1(z) or F2(z) from the LSPs.
*
* F1(z) = product ( 1 - 2 lsp[i] z^-1 + z^-2 )
* i=0,2,4,6,8
* F2(z) = product ( 1 - 2 lsp[i] z^-1 + z^-2 )
* i=1,3,5,7,9
*
* where lsp[] is the LSP vector in the cosine domain.
*
* The expansion is performed using the following recursion:
*
* f[0] = 1
* b = -2.0 * lsp[0]
* f[1] = b
* for i=2 to 5 do
* b = -2.0 * lsp[2*i-2];
* f[i] = b*f[i-1] + 2.0*f[i-2];
* for j=i-1 down to 2 do
* f[j] = f[j] + b*f[j-1] + f[j-2];
* f[1] = f[1] + b;
*
* Returns:
* void
*/
static void Get_lsp_pol(Word32 *lsp, Word32 *f)
{
volatile Word32 f0, f1, f2, f3, f4, f5;
Word32 l1, l2, l3, l4;
/* f[0] = 1.0; */
f0 = 16777216L;
/* f1 = *lsp * -1024; */
f1 = -lsp[0] << 10;
l1 = lsp[2];
l2 = lsp[4];
l3 = lsp[6];
l4 = lsp[8];
f2 = f0 << 1;
f2 -= (((f1 >> 16) * l1) + (((f1 & 0xFFFE) * l1) >> 16)) << 2;
f1 -= l1 << 10;
f3 = f1 << 1;
f3 -= (((f2 >> 16) * l2) + (((f2 & 0xFFFE) * l2) >> 16)) << 2;
f2 += f0;
f2 -= (((f1 >> 16) * l2) + (((f1 & 0xFFFE) * l2) >> 16)) << 2;
f1 -= l2 << 10;
f4 = f2 << 1;
f4 -= (((f3 >> 16) * l3) + (((f3 & 0xFFFE) * l3) >> 16)) << 2;
f3 += f1;
f3 -= (((f2 >> 16) * l3) + (((f2 & 0xFFFE) * l3) >> 16)) << 2;
f2 += f0;
f2 -= (((f1 >> 16) * l3) + (((f1 & 0xFFFE) * l3) >> 16)) << 2;
f1 -= l3 << 10;
f5 = f3 << 1;
f5 -= (((f4 >> 16) * l4) + (((f4 & 0xFFFE) * l4) >> 16)) << 2;
f4 += f2;
f4 -= (((f3 >> 16) * l4) + (((f3 & 0xFFFE) * l4) >> 16)) << 2;
f3 += f1;
f3 -= (((f2 >> 16) * l4) + (((f2 & 0xFFFE) * l4) >> 16)) << 2;
f2 += f0;
f2 -= (((f1 >> 16) * l4) + (((f1 & 0xFFFE) * l4) >> 16)) << 2;
f1 -= l4 << 10;
f[0] = f0;
f[1] = f1;
f[2] = f2;
f[3] = f3;
f[4] = f4;
f[5] = f5;
return;
}
#if _MSC_VER == 1100
#pragma optimize("", on)
#endif
/*
* Lsp_Az
*
*
* Parameters:
* lsp I: Line spectral frequencies
* a O: Predictor coefficients
*
* Function:
* Converts from the line spectral pairs (LSP) to LP coefficients,
* for a 10th order filter.
*
* Find the coefficients of F1(z) and F2(z)
* Multiply F1(z) by 1+z^{-1} and F2(z) by 1-z^{-1}
* A(z) = ( F1(z) + F2(z) ) / 2
*
* Returns:
* void
*/
static void Lsp_Az(Word32 lsp[], Word32 a[])
{
Word32 f1[6], f2[6];
Word32 T0, i, j;
Get_lsp_pol(&lsp[0], f1);
Get_lsp_pol(&lsp[1], f2);
for (i = 5; i > 0; i--)
{
f1[i] += f1[i - 1];
f2[i] -= f2[i - 1];
}
a[0] = 4096;
for (i = 1, j = 10; i <= 5; i++, j--)
{
T0 = f1[i] + f2[i];
a[i] = (Word16)(T0 >> 13); /* emulate fixed point bug */
if ((T0 & 4096) != 0)
{
a[i]++;
}
T0 = f1[i] - f2[i];
a[j] = (Word16)(T0 >> 13); /* emulate fixed point bug */
if ((T0 & 4096) != 0)
{
a[j]++;
}
}
return;
}
/*
* A_Refl
*
*
* Parameters:
* a I: Directform coefficients
* refl O: Reflection coefficients
*
* Function:
* Converts from the directform coefficients to reflection coefficients
*
* Returns:
* void
*/
static void A_Refl(Word32 a[], Word32 refl[])
{
/* local variables */
int normShift;
Word32 aState[M], bState[M];
Word32 normProd, acc, temp, mult, scale, i, j;
/* initialize states */
memcpy(aState, a, sizeof(Word32) * M);
/* backward Levinson recursion */
for (i = M - 1; i >= 0; i--)
{
if (labs(aState[i]) >= 4096)
{
goto ExitRefl;
}