Skip to content

Commit 03224f6

Browse files
youkaichaomzusman
authored andcommitted
[bugfix] interleaving sliding window for cohere2 model (vllm-project#11583)
Signed-off-by: youkaichao <[email protected]>
1 parent 528a28a commit 03224f6

File tree

7 files changed

+206
-13
lines changed

7 files changed

+206
-13
lines changed

docs/source/models/supported_models.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -112,7 +112,7 @@ See [this page](#generative-models) for more information on how to use generativ
112112
- :code:`THUDM/chatglm2-6b`, :code:`THUDM/chatglm3-6b`, etc.
113113
- ✅︎
114114
- ✅︎
115-
* - :code:`CohereForCausalLM`,:code:`Cohere2ForCausalLM`
115+
* - :code:`CohereForCausalLM`, :code:`Cohere2ForCausalLM`
116116
- Command-R
117117
- :code:`CohereForAI/c4ai-command-r-v01`, :code:`CohereForAI/c4ai-command-r7b-12-2024`, etc.
118118
- ✅︎

tests/models/test_initialization.py

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,6 @@
11
from unittest.mock import patch
22

33
import pytest
4-
import transformers
54
from transformers import PretrainedConfig
65

76
from vllm import LLM
@@ -12,9 +11,6 @@
1211
@pytest.mark.parametrize("model_arch", HF_EXAMPLE_MODELS.get_supported_archs())
1312
def test_can_initialize(model_arch):
1413
model_info = HF_EXAMPLE_MODELS.get_hf_info(model_arch)
15-
if (model_arch == "Cohere2ForCausalLM"
16-
and transformers.__version__ < "4.48.0"):
17-
pytest.skip(reason="Model introduced in HF >= 4.48.0")
1814
if not model_info.is_available_online:
1915
pytest.skip("Model is not available online")
2016

vllm/config.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -301,7 +301,7 @@ def __init__(self,
301301
sliding_window = getattr(self.hf_text_config, "sliding_window", None)
302302
has_interleaved_attention = (sliding_window is not None) and (
303303
isinstance(sliding_window, list) or
304-
(self.hf_text_config.model_type in ["gemma2"]))
304+
(self.hf_text_config.model_type in ["gemma2", "cohere2"]))
305305

306306
if (not self.disable_sliding_window and has_interleaved_attention):
307307
if envs.VLLM_ATTENTION_BACKEND == "XFORMERS":

vllm/model_executor/models/commandr.py

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -172,16 +172,18 @@ def __init__(
172172
is_neox_style=False,
173173
)
174174

175-
sliding_window = getattr(config, "sliding_window", None)
176-
# Model v2 has sliding windows, v1 does not
177-
self.v1 = sliding_window is None
175+
# Model v2 has interleaved sliding windows, v1 does not
176+
interleaved_sliding_window = getattr(config,
177+
"interleaved_sliding_window",
178+
None)
179+
self.v1 = interleaved_sliding_window is None
178180

179181
layer_idx = extract_layer_index(prefix)
180182
layer_has_sliding_window = (
181183
getattr(config, "sliding_window_pattern", False)
182184
and (layer_idx + 1) % self.config.sliding_window_pattern != 0)
183185

184-
self.sliding_window = (sliding_window
186+
self.sliding_window = (interleaved_sliding_window
185187
if layer_has_sliding_window else None)
186188

187189
self.attn = Attention(self.num_heads,

vllm/transformers_utils/config.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -22,9 +22,9 @@
2222
from vllm.logger import init_logger
2323
# yapf conflicts with isort for this block
2424
# yapf: disable
25-
from vllm.transformers_utils.configs import (ChatGLMConfig, DbrxConfig,
26-
EAGLEConfig, ExaoneConfig,
27-
H2OVLChatConfig,
25+
from vllm.transformers_utils.configs import (ChatGLMConfig, Cohere2Config,
26+
DbrxConfig, EAGLEConfig,
27+
ExaoneConfig, H2OVLChatConfig,
2828
InternVLChatConfig, JAISConfig,
2929
MedusaConfig, MllamaConfig,
3030
MLPSpeculatorConfig, MPTConfig,
@@ -52,6 +52,7 @@
5252

5353
_CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
5454
"chatglm": ChatGLMConfig,
55+
"cohere2": Cohere2Config,
5556
"dbrx": DbrxConfig,
5657
"mpt": MPTConfig,
5758
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)

vllm/transformers_utils/configs/__init__.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,5 @@
11
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
2+
from vllm.transformers_utils.configs.cohere2 import Cohere2Config
23
from vllm.transformers_utils.configs.dbrx import DbrxConfig
34
from vllm.transformers_utils.configs.eagle import EAGLEConfig
45
from vllm.transformers_utils.configs.exaone import ExaoneConfig
@@ -22,6 +23,7 @@
2223

2324
__all__ = [
2425
"ChatGLMConfig",
26+
"Cohere2Config",
2527
"DbrxConfig",
2628
"MPTConfig",
2729
"RWConfig",
Lines changed: 192 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,192 @@
1+
# ruff: noqa
2+
3+
# Adapted from
4+
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/cohere2/configuration_cohere2.py
5+
from transformers import PretrainedConfig
6+
from transformers.modeling_rope_utils import rope_config_validation
7+
8+
9+
class Cohere2Config(PretrainedConfig):
10+
r"""
11+
This is the configuration class to store the configuration of a [`CohereModel`]. It is used to instantiate an Cohere
12+
model according to the specified arguments, defining the model architecture.
13+
14+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
15+
documentation from [`PretrainedConfig`] for more information. Instantiating a configuration
16+
with the defaults will yield a similar configuration to that of the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) model.
17+
18+
19+
Args:
20+
vocab_size (`int`, *optional*, defaults to 256000):
21+
Vocabulary size of the Cohere model. Defines the number of different tokens that can be represented by the
22+
`inputs_ids` passed when calling [`CohereModel`]
23+
hidden_size (`int`, *optional*, defaults to 8192):
24+
Dimension of the hidden representations.
25+
intermediate_size (`int`, *optional*, defaults to 22528):
26+
Dimension of the MLP representations.
27+
logit_scale (`float`, *optional*, defaults to 0.0625):
28+
The scaling factor for the output logits.
29+
num_hidden_layers (`int`, *optional*, defaults to 40):
30+
Number of hidden layers in the Transformer decoder.
31+
num_attention_heads (`int`, *optional*, defaults to 64):
32+
Number of attention heads for each attention layer in the Transformer decoder.
33+
num_key_value_heads (`int`, *optional*):
34+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
35+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
36+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
37+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
38+
by meanpooling all the original heads within that group. For more details checkout [this
39+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
40+
`num_attention_heads`.
41+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
42+
The non-linear activation function (function or string) in the decoder.
43+
max_position_embeddings (`int`, *optional*, defaults to 8192):
44+
The maximum sequence length that this model might ever be used with.
45+
initializer_range (`float`, *optional*, defaults to 0.02):
46+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
47+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
48+
The epsilon used by the layer normalization.
49+
use_cache (`bool`, *optional*, defaults to `True`):
50+
Whether or not the model should return the last key/values attentions (not used by all models). Only
51+
relevant if `config.is_decoder=True`.
52+
pad_token_id (`int`, *optional*, defaults to 0):
53+
Padding token id.
54+
bos_token_id (`int`, *optional*, defaults to 5):
55+
Beginning of stream token id.
56+
eos_token_id (`int`, *optional*, defaults to 255001):
57+
End of stream token id.
58+
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
59+
Whether to tie weight embeddings
60+
rope_theta (`float`, *optional*, defaults to 10000.0):
61+
The base period of the RoPE embeddings.
62+
rope_scaling (`Dict`, *optional*):
63+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
64+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
65+
accordingly.
66+
Expected contents:
67+
`rope_type` (`str`):
68+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
69+
'llama3'], with 'default' being the original RoPE implementation.
70+
`factor` (`float`, *optional*):
71+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
72+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
73+
original maximum pre-trained length.
74+
`original_max_position_embeddings` (`int`, *optional*):
75+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
76+
pretraining.
77+
`attention_factor` (`float`, *optional*):
78+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
79+
computation. If unspecified, it defaults to value recommended by the implementation, using the
80+
`factor` field to infer the suggested value.
81+
`beta_fast` (`float`, *optional*):
82+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
83+
ramp function. If unspecified, it defaults to 32.
84+
`beta_slow` (`float`, *optional*):
85+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
86+
ramp function. If unspecified, it defaults to 1.
87+
`short_factor` (`List[float]`, *optional*):
88+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
89+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
90+
size divided by the number of attention heads divided by 2
91+
`long_factor` (`List[float]`, *optional*):
92+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
93+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
94+
size divided by the number of attention heads divided by 2
95+
`low_freq_factor` (`float`, *optional*):
96+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
97+
`high_freq_factor` (`float`, *optional*):
98+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
99+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
100+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
101+
attention_dropout (`float`, *optional*, defaults to 0.0):
102+
The dropout ratio for the attention probabilities.
103+
sliding_window (`int`, *optional*, defaults to 4096):
104+
Size of the sliding window attention context.
105+
sliding_window_pattern (`int`, *optional*, defaults to 4):
106+
Pattern for the sliding window attention.
107+
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
108+
109+
```python
110+
>>> from transformers import Cohere2Model, Cohere2Config
111+
112+
>>> # Initializing a Cohere Nextmodel configuration
113+
>>> configuration = Cohere2Config()
114+
115+
>>> # Initializing a model from the Cohere2 configuration
116+
>>> model = Cohere2Model(configuration) # doctest: +SKIP
117+
118+
>>> # Accessing the model configuration
119+
>>> configuration = model.config # doctest: +SKIP
120+
```
121+
"""
122+
123+
model_type = "cohere2"
124+
keys_to_ignore_at_inference = ["past_key_values"]
125+
126+
def __init__(
127+
self,
128+
vocab_size=256000,
129+
hidden_size=8192,
130+
intermediate_size=22528,
131+
logit_scale=0.0625,
132+
num_hidden_layers=40,
133+
num_attention_heads=64,
134+
num_key_value_heads=None,
135+
hidden_act="silu",
136+
max_position_embeddings=8192,
137+
initializer_range=0.02,
138+
layer_norm_eps=1e-5,
139+
use_cache=True,
140+
pad_token_id=0,
141+
bos_token_id=5,
142+
eos_token_id=255001,
143+
tie_word_embeddings=True,
144+
rope_theta=10000.0,
145+
rope_scaling=None,
146+
attention_bias=False,
147+
attention_dropout=0.0,
148+
sliding_window=4096,
149+
sliding_window_pattern=4,
150+
cache_implementation="hybrid",
151+
**kwargs,
152+
):
153+
self.vocab_size = vocab_size
154+
self.max_position_embeddings = max_position_embeddings
155+
self.hidden_size = hidden_size
156+
self.logit_scale = logit_scale
157+
self.intermediate_size = intermediate_size
158+
self.num_hidden_layers = num_hidden_layers
159+
self.num_attention_heads = num_attention_heads
160+
161+
# for backward compatibility
162+
if num_key_value_heads is None:
163+
num_key_value_heads = num_attention_heads
164+
165+
self.num_key_value_heads = num_key_value_heads
166+
self.hidden_act = hidden_act
167+
self.initializer_range = initializer_range
168+
self.layer_norm_eps = layer_norm_eps
169+
self.use_cache = use_cache
170+
self.rope_theta = rope_theta
171+
self.rope_scaling = rope_scaling
172+
self.attention_bias = attention_bias
173+
self.attention_dropout = attention_dropout
174+
self.sliding_window = sliding_window
175+
self.sliding_window_pattern = sliding_window_pattern
176+
# Need to specify head_dim in the config so it can be used in the attention forward functions
177+
self.head_dim = hidden_size // num_attention_heads
178+
self.cache_implementation = cache_implementation
179+
180+
# Validate the correctness of rotary position embeddings parameters
181+
rope_config_validation(self)
182+
183+
super().__init__(
184+
pad_token_id=pad_token_id,
185+
bos_token_id=bos_token_id,
186+
eos_token_id=eos_token_id,
187+
tie_word_embeddings=tie_word_embeddings,
188+
**kwargs,
189+
)
190+
191+
192+
__all__ = ["Cohere2Config"]

0 commit comments

Comments
 (0)