forked from apple/ml-stable-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStableDiffusionPipeline.swift
291 lines (245 loc) · 10.2 KB
/
StableDiffusionPipeline.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
// For licensing see accompanying LICENSE.md file.
// Copyright (C) 2022 Apple Inc. All Rights Reserved.
import Foundation
import CoreML
import Accelerate
import CoreGraphics
/// A pipeline used to generate image samples from text input using stable diffusion
///
/// This implementation matches:
/// [Hugging Face Diffusers Pipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py)
@available(iOS 16.2, macOS 13.1, *)
public struct StableDiffusionPipeline: ResourceManaging {
/// Model to generate embeddings for tokenized input text
var textEncoder: TextEncoder
/// Model used to predict noise residuals given an input, diffusion time step, and conditional embedding
var unet: Unet
/// Model used to generate final image from latent diffusion process
var decoder: Decoder
/// Optional model for checking safety of generated image
var safetyChecker: SafetyChecker? = nil
/// Controls the influence of the text prompt on sampling process (0=random images)
var guidanceScale: Float = 7.5
/// Reports whether this pipeline can perform safety checks
public var canSafetyCheck: Bool {
safetyChecker != nil
}
/// Option to reduce memory during image generation
///
/// If true, the pipeline will lazily load TextEncoder, Unet, Decoder, and SafetyChecker
/// when needed and aggressively unload their resources after
///
/// This will increase latency in favor of reducing memory
var reduceMemory: Bool = false
/// Creates a pipeline using the specified models and tokenizer
///
/// - Parameters:
/// - textEncoder: Model for encoding tokenized text
/// - unet: Model for noise prediction on latent samples
/// - decoder: Model for decoding latent sample to image
/// - safetyChecker: Optional model for checking safety of generated images
/// - guidanceScale: Influence of the text prompt on generation process
/// - reduceMemory: Option to enable reduced memory mode
/// - Returns: Pipeline ready for image generation
public init(textEncoder: TextEncoder,
unet: Unet,
decoder: Decoder,
safetyChecker: SafetyChecker? = nil,
guidanceScale: Float = 7.5,
reduceMemory: Bool = false) {
self.textEncoder = textEncoder
self.unet = unet
self.decoder = decoder
self.safetyChecker = safetyChecker
self.guidanceScale = guidanceScale
self.reduceMemory = reduceMemory
}
/// Load required resources for this pipeline
///
/// If reducedMemory is true this will instead call prewarmResources instead
/// and let the pipeline lazily load resources as needed
public func loadResources() throws {
if reduceMemory {
try prewarmResources()
} else {
try textEncoder.loadResources()
try unet.loadResources()
try decoder.loadResources()
try safetyChecker?.loadResources()
}
}
/// Unload the underlying resources to free up memory
public func unloadResources() {
textEncoder.unloadResources()
unet.unloadResources()
decoder.unloadResources()
safetyChecker?.unloadResources()
}
// Prewarm resources one at a time
public func prewarmResources() throws {
try textEncoder.prewarmResources()
try unet.prewarmResources()
try decoder.prewarmResources()
try safetyChecker?.prewarmResources()
}
/// Text to image generation using stable diffusion
///
/// - Parameters:
/// - prompt: Text prompt to guide sampling
/// - stepCount: Number of inference steps to perform
/// - imageCount: Number of samples/images to generate for the input prompt
/// - seed: Random seed which
/// - disableSafety: Safety checks are only performed if `self.canSafetyCheck && !disableSafety`
/// - progressHandler: Callback to perform after each step, stops on receiving false response
/// - Returns: An array of `imageCount` optional images.
/// The images will be nil if safety checks were performed and found the result to be un-safe
public func generateImages(
prompt: String,
imageCount: Int = 1,
stepCount: Int = 50,
seed: Int = 0,
disableSafety: Bool = false,
progressHandler: (Progress) -> Bool = { _ in true }
) throws -> [CGImage?] {
// Encode the input prompt as well as a blank unconditioned input
let promptEmbedding = try textEncoder.encode(prompt)
let blankEmbedding = try textEncoder.encode("")
if reduceMemory {
textEncoder.unloadResources()
}
// Convert to Unet hidden state representation
let concatEmbedding = MLShapedArray<Float32>(
concatenating: [blankEmbedding, promptEmbedding],
alongAxis: 0
)
let hiddenStates = toHiddenStates(concatEmbedding)
/// Setup schedulers
let scheduler = (0..<imageCount).map { _ in Scheduler(stepCount: stepCount) }
let stdev = scheduler[0].initNoiseSigma
// Generate random latent samples from specified seed
var latents = generateLatentSamples(imageCount, stdev: stdev, seed: seed)
// De-noising loop
for (step,t) in scheduler[0].timeSteps.enumerated() {
// Expand the latents for classifier-free guidance
// and input to the Unet noise prediction model
let latentUnetInput = latents.map {
MLShapedArray<Float32>(concatenating: [$0, $0], alongAxis: 0)
}
// Predict noise residuals from latent samples
// and current time step conditioned on hidden states
var noise = try unet.predictNoise(
latents: latentUnetInput,
timeStep: t,
hiddenStates: hiddenStates
)
noise = performGuidance(noise)
// Have the scheduler compute the previous (t-1) latent
// sample given the predicted noise and current sample
for i in 0..<imageCount {
latents[i] = scheduler[i].step(
output: noise[i],
timeStep: t,
sample: latents[i]
)
}
// Report progress
let progress = Progress(
pipeline: self,
prompt: prompt,
step: step,
stepCount: stepCount,
currentLatentSamples: latents,
isSafetyEnabled: canSafetyCheck && !disableSafety
)
if !progressHandler(progress) {
// Stop if requested by handler
return []
}
}
if reduceMemory {
unet.unloadResources()
}
// Decode the latent samples to images
return try decodeToImages(latents, disableSafety: disableSafety)
}
func generateLatentSamples(_ count: Int, stdev: Float, seed: Int) -> [MLShapedArray<Float32>] {
var sampleShape = unet.latentSampleShape
sampleShape[0] = 1
var random = NumPyRandomSource(seed: UInt32(truncatingIfNeeded: seed))
let samples = (0..<count).map { _ in
MLShapedArray<Float32>(
converting: random.normalShapedArray(sampleShape, mean: 0.0, stdev: Double(stdev)))
}
return samples
}
func toHiddenStates(_ embedding: MLShapedArray<Float32>) -> MLShapedArray<Float32> {
// Unoptimized manual transpose [0, 2, None, 1]
// e.g. From [2, 77, 768] to [2, 768, 1, 77]
let fromShape = embedding.shape
let stateShape = [fromShape[0],fromShape[2], 1, fromShape[1]]
var states = MLShapedArray<Float32>(repeating: 0.0, shape: stateShape)
for i0 in 0..<fromShape[0] {
for i1 in 0..<fromShape[1] {
for i2 in 0..<fromShape[2] {
states[scalarAt:i0,i2,0,i1] = embedding[scalarAt:i0, i1, i2]
}
}
}
return states
}
func performGuidance(_ noise: [MLShapedArray<Float32>]) -> [MLShapedArray<Float32>] {
noise.map { performGuidance($0) }
}
func performGuidance(_ noise: MLShapedArray<Float32>) -> MLShapedArray<Float32> {
let blankNoiseScalars = noise[0].scalars
let textNoiseScalars = noise[1].scalars
var resultScalars = blankNoiseScalars
for i in 0..<resultScalars.count {
// unconditioned + guidance*(text - unconditioned)
resultScalars[i] += guidanceScale*(textNoiseScalars[i]-blankNoiseScalars[i])
}
var shape = noise.shape
shape[0] = 1
return MLShapedArray<Float32>(scalars: resultScalars, shape: shape)
}
func decodeToImages(_ latents: [MLShapedArray<Float32>],
disableSafety: Bool) throws -> [CGImage?] {
let images = try decoder.decode(latents)
if reduceMemory {
decoder.unloadResources()
}
// If safety is disabled return what was decoded
if disableSafety {
return images
}
// If there is no safety checker return what was decoded
guard let safetyChecker = safetyChecker else {
return images
}
// Otherwise change images which are not safe to nil
let safeImages = try images.map { image in
try safetyChecker.isSafe(image) ? image : nil
}
if reduceMemory {
safetyChecker.unloadResources()
}
return safeImages
}
}
@available(iOS 16.2, macOS 13.1, *)
extension StableDiffusionPipeline {
/// Sampling progress details
public struct Progress {
public let pipeline: StableDiffusionPipeline
public let prompt: String
public let step: Int
public let stepCount: Int
public let currentLatentSamples: [MLShapedArray<Float32>]
public let isSafetyEnabled: Bool
public var currentImages: [CGImage?] {
try! pipeline.decodeToImages(
currentLatentSamples,
disableSafety: !isSafetyEnabled)
}
}
}