-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathpipelines.py
388 lines (328 loc) · 13.6 KB
/
pipelines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
import numpy
import onnx
from deepsparse.pipeline import Pipeline
from deepsparse.utils import model_to_path
from deepsparse.yolo.schemas import YOLOInput, YOLOOutput
from deepsparse.yolo.utils import (
COCO_CLASSES,
YoloPostprocessor,
get_onnx_expected_image_shape,
modify_yolo_onnx_input_shape,
postprocess_nms,
yolo_onnx_has_postprocessing,
)
try:
import cv2
cv2_error = None
except ModuleNotFoundError as cv2_import_error:
cv2 = None
cv2_error = cv2_import_error
__all__ = ["YOLOPipeline"]
@Pipeline.register(
task="yolo",
default_model_path=(
"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95"
),
)
class YOLOPipeline(Pipeline):
"""
Image detection YOLO pipeline for DeepSparse
:param model_path: path on local system or SparseZoo stub to load the model from
:param engine_type: inference engine to use. Currently, supported values
include 'deepsparse' and 'onnxruntime'. Default is 'deepsparse'
:param batch_size: static batch size to use for inference. Default is 1
:param num_cores: number of CPU cores to allocate for inference engine. None
specifies all available cores. Default is None
:param scheduler: (deepsparse only) kind of scheduler to execute with.
Pass None for the default
:param input_shapes: list of shapes to set ONNX inputs to. Pass None
to use model as-is. Default is None
:param alias: optional name to give this pipeline instance, useful when
inferencing with multiple models. Default is None
:param class_names: Optional string identifier, dict, or json file of
class names to use for mapping class ids to class labels. Default is
`coco`
:param image_size: optional image size to override with model shape. Can
be an int which will be the size for both dimensions, or a 2-tuple
of the width and height sizes. Default does not modify model image shape
"""
def __init__(
self,
*,
class_names: Optional[Union[str, Dict[str, str]]] = None,
model_config: Optional[str] = None,
image_size: Union[int, Tuple[int, int], None] = None,
nms_function: Callable[
[Union["torch.Tensor", numpy.ndarray], float, float, bool], # noqa F821
List[numpy.ndarray],
] = postprocess_nms,
**kwargs,
):
self._image_size = image_size
self.nms_function = nms_function
self._onnx_temp_file = None # placeholder for potential tmpfile reference
super().__init__(
**kwargs,
)
if isinstance(class_names, str):
if class_names.endswith(".json"):
class_names = json.load(open(class_names))
elif class_names == "coco":
class_names = COCO_CLASSES
else:
raise ValueError(f"Unknown class_names: {class_names}")
if isinstance(class_names, dict):
self._class_names = class_names
elif isinstance(class_names, list):
self._class_names = {
str(index): class_name for index, class_name in enumerate(class_names)
}
else:
self._class_names = None
onnx_model = onnx.load(self.onnx_file_path)
self.has_postprocessing = yolo_onnx_has_postprocessing(onnx_model)
self.is_quantized = self.model_is_quantized(onnx_model=onnx_model)
self.postprocessor = (
None
if self.has_postprocessing
else YoloPostprocessor(
image_size=self.image_size,
cfg=model_config,
)
)
self._model_config = model_config
@property
def model_config(self) -> str:
return self._model_config
@property
def class_names(self) -> Optional[Dict[str, str]]:
return self._class_names
@property
def image_size(self) -> Tuple[int, int]:
"""
:return: shape of image size inference is run at
"""
return self._image_size
@property
def input_schema(self) -> Type[YOLOInput]:
"""
:return: pydantic model class that inputs to this pipeline must comply to
"""
return YOLOInput
@property
def output_schema(self) -> Type[YOLOOutput]:
"""
:return: pydantic model class that outputs of this pipeline must comply to
"""
return YOLOOutput
def setup_onnx_file_path(self) -> str:
"""
Performs any setup to unwrap and process the given `model_path` and other
class properties into an inference ready onnx file to be compiled by the
engine of the pipeline
:return: file path to the ONNX file for the engine to compile
"""
model_path = model_to_path(self.model_path)
if self._image_size is None:
self._image_size = get_onnx_expected_image_shape(onnx.load(model_path))
if self._image_size == (0, 0):
raise ValueError(
"The model does not have a static image size shape."
"Specify the expected image size by passing the"
"`image_size` argument to the pipeline."
)
else:
# override model input shape to given image size
if isinstance(self._image_size, int):
self._image_size = (self._image_size, self._image_size)
self._image_size = self._image_size[:2]
model_path, self._onnx_temp_file = modify_yolo_onnx_input_shape(
model_path, self._image_size
)
return model_path
def process_inputs(
self, inputs: YOLOInput
) -> Tuple[List[numpy.ndarray], Dict[str, Any]]:
"""
:param inputs: inputs to the pipeline. Must be the type of the `input_schema`
of this pipeline
:return: inputs of this model processed into a list of numpy arrays that
can be directly passed into the forward pass of the pipeline engine
"""
# Noting that if a batch of numpy arrays are passed in, we assume they
# are already the correct shape
if isinstance(inputs.images, (str, numpy.ndarray)):
inputs.images = [inputs.images]
image_batch = list(self.executor.map(self._preprocess_image, inputs.images))
original_image_shapes = None
if image_batch and isinstance(image_batch[0], tuple):
# splits image batch is of format:
# [(preprocesses_img, original_image_shape), ...] into separate lists
image_batch, original_image_shapes = list(map(list, zip(*image_batch)))
image_batch = self._make_batch(image_batch)
image_batch = numpy.ascontiguousarray(
image_batch,
dtype=numpy.uint8 if self.is_quantized else numpy.float32,
)
if not self.is_quantized:
image_batch /= 255
postprocessing_kwargs = dict(
iou_thres=inputs.iou_thres,
conf_thres=inputs.conf_thres,
multi_label=inputs.multi_label,
original_image_shapes=original_image_shapes,
return_masks=inputs.return_masks,
return_intermediate_outputs=inputs.return_intermediate_outputs,
)
return [image_batch], postprocessing_kwargs
def _scale_boxes(
self, boxes: numpy.ndarray, original_image_shape: Optional[Tuple[int, ...]]
) -> numpy.ndarray:
if not original_image_shape:
return boxes
scale = numpy.flipud(
numpy.divide(
numpy.asarray(original_image_shape), numpy.asarray(self.image_size)
)
)
# scale is originally np.array([x_scale, y_scale]), needs to be
# np.array([x_scale, y_scale, x_scale, y_scale])
# to allow broadcasting with bbox(s) with shape (num_bboxes, 4)
scale = numpy.concatenate([scale, scale])
boxes = numpy.multiply(boxes, scale)
return boxes
def _preprocess_image(self, image) -> Tuple[numpy.ndarray, Tuple[int, ...]]:
if isinstance(image, list):
# image consists of floats or ints
image = numpy.asarray(image)
if isinstance(image, str):
image = cv2.imread(image)
image = self._make_channels_last(image)
# extract (H, W) shapes from (H, W, C) and (B, H, W, C) shaped input
original_image_shape = image.shape[:2] if image.ndim == 3 else image.shape[1:-1]
if image.ndim < 4:
# Assume a batch is of the correct size already
image = cv2.resize(image, dsize=tuple(reversed(self.image_size)))
image = self._make_channels_first(image)
return image, original_image_shape
def process_engine_outputs(
self,
engine_outputs: List[numpy.ndarray],
**kwargs,
) -> YOLOOutput:
"""
:param engine_outputs: list of numpy arrays that are the output of the engine
forward pass
:return: outputs of engine post-processed into an object in the `output_schema`
format of this pipeline
"""
# post-processing
if self.postprocessor:
batch_output = self.postprocessor.pre_nms_postprocess(engine_outputs)
else:
batch_output = engine_outputs[
0
] # post-processed values stored in first output
# NMS
batch_output = self.nms_function(
outputs=batch_output,
iou_thres=kwargs.get("iou_thres", 0.25),
conf_thres=kwargs.get("conf_thres", 0.45),
multi_label=kwargs.get("multi_label", False),
)
batch_boxes, batch_scores, batch_labels = [], [], []
original_image_shapes = kwargs.get("original_image_shapes")
for idx, image_output in enumerate(batch_output):
original_image_shape = (
original_image_shapes[idx] if idx < len(original_image_shapes) else None
)
batch_boxes.append(
self._scale_boxes(
boxes=image_output[:, 0:4],
original_image_shape=original_image_shape,
).tolist(),
)
batch_scores.append(image_output[:, 4].tolist())
batch_labels.append(image_output[:, 5].tolist())
if self.class_names is not None:
batch_labels_as_strings = [
str(int(label)) for label in batch_labels[-1]
]
batch_class_names = [
self.class_names[label_string]
for label_string in batch_labels_as_strings
]
batch_labels[-1] = batch_class_names
return YOLOOutput(
boxes=batch_boxes,
scores=batch_scores,
labels=batch_labels,
intermediate_outputs=engine_outputs[0]
if kwargs.get("return_intermediate_outputs")
else None,
)
def _make_batch(self, image_batch: List[numpy.ndarray]) -> numpy.ndarray:
# return a numpy batch of images
if len(image_batch) == 1:
current_batch = image_batch[0]
if current_batch.ndim == 4:
return current_batch
return numpy.stack(image_batch, axis=0)
def _make_channels_first(self, image: numpy.ndarray) -> numpy.ndarray:
# return a numpy array with channels first
is_single_image = image.ndim == 3
is_batch = image.ndim == 4
if image.shape[-1] != 3:
return image
if is_single_image:
return numpy.moveaxis(image, -1, 0)
if is_batch:
return numpy.moveaxis(image, -1, 1)
return image
def _make_channels_last(self, image: numpy.ndarray) -> numpy.ndarray:
# return a numpy array with channels first
is_single_image = image.ndim == 3
is_batch = image.ndim == 4
if image.shape[-1] == 3:
return image
if is_single_image:
return numpy.moveaxis(image, 0, -1)
if is_batch:
return numpy.moveaxis(image, 1, -1)
return image
def model_has_postprocessing(self, loaded_onnx_model) -> bool:
"""
:return: True if loaded_onnx_model has postprocessing, False otherwise
"""
# get number of dimensions in each output
outputs_num_dims = [
len(output.type.tensor_type.shape.dim)
for output in loaded_onnx_model.graph.output
]
# assume if only one output, then it is post-processed
if len(outputs_num_dims) == 1:
return True
return all(num_dims > outputs_num_dims[0] for num_dims in outputs_num_dims[1:])
def model_is_quantized(self, onnx_model) -> bool:
"""
:return: True if loaded_onnx_model is quantized, False otherwise
"""
return (
onnx_model.graph.input[0].type.tensor_type.elem_type
== onnx.TensorProto.UINT8
)