Skip to content

Commit 56b7663

Browse files
KSGulindbogunowicz
andauthored
[Cherry-pick] Docs fixes (#1045)
* YOLOv5 docs fixes (#1041) * IC docs fixes (#1042) * Transformers doc fixes (#1043) * [Fix][Docs] Update README.md to contain image_classification dependency (#1039) --------- Co-authored-by: dbogunowicz <[email protected]>
1 parent ba5fe44 commit 56b7663

File tree

3 files changed

+9
-9
lines changed

3 files changed

+9
-9
lines changed

src/deepsparse/image_classification/README.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ your machine is compatible with our [hardware requirements].
2222

2323
### Installation
2424

25-
```pip install deepsparse```
25+
```pip install deepsparse[image_classification]```
2626

2727
### Model Format
2828

@@ -122,7 +122,7 @@ pip install deepsparse[server]
122122
The following section includes example usage of the Pipeline and server APIs for
123123
various image classification models.
124124

125-
[List of Image Classification SparseZoo Models](https://sparsezoo.neuralmagic.com/?domain=cv&sub_domain=classification&page=1)
125+
[List of Image Classification SparseZoo Models](https://sparsezoo.neuralmagic.com/?useCase=classification)
126126

127127

128128
#### Python Pipeline
@@ -196,4 +196,4 @@ For Neural Magic Support, sign up or log in to our [Deep Sparse Community Slack]
196196
[ONNX]: https://onnx.ai/
197197
[SparseML]: https://github.com/neuralmagic/sparseml
198198
[SparseML Image Classification Documentation]: https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/pytorch/image_classification/README_image_classification.md
199-
[SparseZoo]: https://sparsezoo.neuralmagic.com/
199+
[SparseZoo]: https://sparsezoo.neuralmagic.com/

src/deepsparse/transformers/README.md

+4-4
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ for the `question` as a substring of the `context`. The following examples use
100100
question answering BERT model trained on the `SQuAD` dataset downloaded by default from the SparseZoo.
101101

102102
[List of available SparseZoo Question Answering Models](
103-
https://sparsezoo.neuralmagic.com/?page=1&domain=nlp&sub_domain=question_answering)
103+
https://sparsezoo.neuralmagic.com/?useCase=question_answering)
104104

105105
#### Python Pipeline
106106

@@ -144,7 +144,7 @@ uses a pruned and quantized text sentiment analysis BERT model trained on the `s
144144
from the SparseZoo. This `sst2` model classifies sentences as positive or negative.
145145

146146
[List of available SparseZoo Sentiment Analysis Models](
147-
https://sparsezoo.neuralmagic.com/?domain=nlp&sub_domain=sentiment_analysis)
147+
https://sparsezoo.neuralmagic.com/?useCase=sentiment_analysis)
148148

149149
#### Python Pipeline
150150
```python
@@ -190,7 +190,7 @@ DistilBERT model trained on the `qqp` dataset downloaded from a SparseZoo stub.
190190
The `qqp` dataset takes pairs of questions and predicts if they are a duplicate or not.
191191

192192
[List of available SparseZoo Text Classification Models](
193-
https://sparsezoo.neuralmagic.com/?page=1&domain=nlp&sub_domain=text_classification)
193+
https://sparsezoo.neuralmagic.com/?useCase=text_classification)
194194

195195
#### Python Pipeline
196196
```python
@@ -249,7 +249,7 @@ The following example uses a pruned and quantized token classification NER BERT
249249
trained on the `CoNLL` dataset downloaded from the SparseZoo.
250250

251251
[List of available SparseZoo Token Classification Models](
252-
https://sparsezoo.neuralmagic.com/?page=1&domain=nlp&sub_domain=token_classification)
252+
https://sparsezoo.neuralmagic.com/?useCase=token_classification)
253253

254254
#### Python Pipeline
255255
```python

src/deepsparse/yolo/README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ sparseml.yolov5.export_onnx \
3737
--weights path/to/your/model \
3838
--dynamic #Allows for dynamic input shape
3939
```
40-
This creates `model.onnx` file, in the directory of your `weights` (e.g. `runs/train/weights/model.onnx`).
40+
This creates a DeepSparse_Deployment folder with a `model.onnx` file (e.g. `runs/train/exp/DeepSparse_Deployment/model.onnx`).
4141

4242
#### SparseZoo Stub
4343
Alternatively, you can skip the process of the ONNX model export by using Neural Magic's [SparseZoo](https://sparsezoo.neuralmagic.com/). The SparseZoo contains pre-sparsified models and SparseZoo stubs enable you to reference any model on the SparseZoo in a convenient and predictable way.
@@ -76,7 +76,7 @@ pip install deepsparse[yolo,server]
7676
The following example uses pipelines to run a pruned and quantized YOLOv5l model for inference, downloaded by default from the SparseZoo. As input the pipeline ingests a list of images and returns for each image the detection boxes in numeric form.
7777

7878
[List of the YOLOv5 SparseZoo Models](
79-
https://sparsezoo.neuralmagic.com/?domain=cv&sub_domain=detection&page=1)
79+
https://sparsezoo.neuralmagic.com/?useCase=detection&architectures=yolov5)
8080

8181
If you don't have an image ready, pull a sample image down with
8282

0 commit comments

Comments
 (0)