|
| 1 | +# Pipeline Creation |
| 2 | + |
| 3 | +```python |
| 4 | +from deepsparse import TextGeneration |
| 5 | + |
| 6 | +MODEL_PATH = "path/to/model/or/zoostub" |
| 7 | +text_pipeline = TextGeneration(model_path=MODEL_PATH) |
| 8 | + |
| 9 | +``` |
| 10 | + |
| 11 | +# Inference Runs |
| 12 | + |
| 13 | +```python |
| 14 | +PROMPT = "how are you?" |
| 15 | +SECOND_PROMPT = "what book is really popular right now?" |
| 16 | +``` |
| 17 | + |
| 18 | +### All defaults |
| 19 | +```python |
| 20 | +text_result = text_pipeline(prompt=PROMPT) |
| 21 | +``` |
| 22 | + |
| 23 | +### Enable Streaming |
| 24 | +```python |
| 25 | +generations = text_pipeline(prompt=PROMPT, streaming=True) |
| 26 | +for text_generation in generations: |
| 27 | + print(text_generation) |
| 28 | +``` |
| 29 | + |
| 30 | +### Multiple Inputs |
| 31 | +```python |
| 32 | +PROMPTS = [PROMPT, SECOND_PROMPT] |
| 33 | +text_output = text_pipeline(prompt=PROMPTS) |
| 34 | + |
| 35 | +prompt_output = text_output.generations[0] |
| 36 | +second_prompt_output = text_output.generations[1] |
| 37 | +``` |
| 38 | + |
| 39 | +### Use `generation_config` to control the generated results |
| 40 | +- Limit the generated output size using the `max_length` property |
| 41 | +- For a complete list of supported attributes, see the tables below |
| 42 | + |
| 43 | +```python |
| 44 | +generation_config = {"max_length": 10} |
| 45 | +generations = text_pipeline(prompt=PROMPT, generation_config=generation_config) |
| 46 | +``` |
| 47 | + |
| 48 | +### Use the transformers `GenerationConfig` object for the `generation_config` |
| 49 | + |
| 50 | +```python |
| 51 | +from transformers import GenerationConfig |
| 52 | + |
| 53 | +generation_config = GenerationConfig() |
| 54 | +generation_config.max_length = 10 |
| 55 | + |
| 56 | +generations = text_pipeline(prompt=PROMPT, generation_config=generation_config) |
| 57 | +``` |
| 58 | + |
| 59 | +### Use just `kwargs` |
| 60 | +- The attributes supported through the `generation_config` are also supported through |
| 61 | +`kwargs` |
| 62 | + |
| 63 | +```python |
| 64 | +generations = text_pipeline(prompt=PROMPT, max_length=10) |
| 65 | +``` |
| 66 | +### Use the GenerationConfig during pipeline creation |
| 67 | +- Every inference run with this pipeline will apply this generation config, unless |
| 68 | +also provided during inference |
| 69 | + |
| 70 | +```python |
| 71 | +MODEL_PATH = "path/to/model/or/zoostub" |
| 72 | +generation_config = {"max_length": 10} |
| 73 | +text_pipeline = TextGeneration(model_path=MODEL_PATH, generation_config=generation_config) |
| 74 | + |
| 75 | +generations = text_pipeline(prompt=PROMPT) |
| 76 | + |
| 77 | +# Override the generation config by providing a config during inference time |
| 78 | +generation_config = {"max_length": 25} |
| 79 | +generations = text_pipeline(prompt=PROMPT, generation_config=generation_config) |
| 80 | +``` |
| 81 | + |
| 82 | +### Get more then one response for a given prompt |
| 83 | + |
| 84 | +```python |
| 85 | +generation_config = {"num_return_sequences": 2} |
| 86 | +generations = text_pipeline(prompt=PROMPT, generation_config=generation_config) |
| 87 | +``` |
| 88 | + |
| 89 | +### Get more than one unique response |
| 90 | + |
| 91 | +```python |
| 92 | +generation_config = {"num_return_sequences": 2, "do_sample": True} |
| 93 | +generations = text_pipeline(prompt=PROMPT, generation_config=generation_config) |
| 94 | +``` |
| 95 | + |
| 96 | +### Use multiple prompts and generate multiple outputs for each prompt |
| 97 | + |
| 98 | +```python |
| 99 | +PROMPTS = [PROMPT, SECOND_PROMPT] |
| 100 | + |
| 101 | +generations = text_pipeline(prompt=PROMPTS, num_return_sequences=2, do_sample=True, max_length=100) |
| 102 | +prompt_outputs = text_output.generations[0] |
| 103 | +second_prompt_outputs = text_output.generations[1] |
| 104 | + |
| 105 | +print("Outputs from the first prompt: ") |
| 106 | +for output in prompt_outputs: |
| 107 | + print(output) |
| 108 | + print("\n") |
| 109 | + |
| 110 | +print("Outputs from the second prompt: ") |
| 111 | +for output in second_prompt_outputs: |
| 112 | + print(output) |
| 113 | + print("\n") |
| 114 | +``` |
| 115 | + |
| 116 | +Output: |
| 117 | +``` |
| 118 | +Outputs from the first prompt: |
| 119 | +text=" are you coping better with holidays?\nI'm been reall getting good friends and helping friends as much as i can so it's all good." score=None finished=True finished_reason='stop' |
| 120 | +
|
| 121 | +text="\nI'm good... minor panic attacks but aside from that I'm good." score=None finished=True finished_reason='stop' |
| 122 | +
|
| 123 | +Outputs from the second prompt: |
| 124 | +text='\nHAVING A GOOD TIME by Maya Angelou; How to Be a Winner by Peter Enns; BE CAREFUL WHAT YOU WHORE FOR by Sarah Bergman; 18: The Basic Ingredients of a Good Life by Jack Canfield.\nI think you might also read The Sympathy of the earth by Charles Darwin, if you are not interested in reading books. Do you write? I think it will help you to refine your own writing.' score=None finished=True finished_reason='stop' |
| 125 | +
|
| 126 | +text=' every school or publication I have looked at has said the same two books.\nIt depends on the school/master. AIS was the New York Times Bestseller forever, kicked an ass in the teen fiction genre for many reasons, a lot of fiction picks like that have been around a while hence popularity. And most science fiction and fantasy titles (but not romance or thriller) are still popular.' score=None finished=True finished_reason='stop' |
| 127 | +``` |
| 128 | + |
| 129 | + |
| 130 | +### Output scores |
| 131 | + |
| 132 | +```python |
| 133 | +generations = text_pipeline(prompt=PROMPT, output_score=True) |
| 134 | +``` |
| 135 | + |
| 136 | +<h1><summary>Text Generation GenerationConfig Features Supported </h1></summary> |
| 137 | + |
| 138 | + |
| 139 | +<h2> Parameters controlling the output length: </h2> |
| 140 | + |
| 141 | +| Feature | Description | Deepsparse Default | HuggingFace Default | Supported | |
| 142 | +| :--- | :----: | :----: | :----: | ---:| |
| 143 | +| max_length | Maximum length of generated tokens. Equal to input_prompt + max_new_tokens. Overridden by max_new_tokens | 1024 | 20 | Yes| |
| 144 | +| max_new_tokens | Maximum number of tokens to generate, ignoring prompt tokens. | None | None | Yes | |
| 145 | +| min_length | Minimum length of generated tokens. Equal to input_prompt + min_new_tokens. Overridden by min_new_tokens | - | 0 | No |
| 146 | +| min_new_tokens | Minomum number of tokens to generate, ignoring prompt tokens. | - | None | No | |
| 147 | +| max_time | - | - | - | No | |
| 148 | + |
| 149 | +<br/> |
| 150 | +<h2> Parameters for manipulation of the model output logits </h2> |
| 151 | + |
| 152 | +| Feature | Description | Deepsparse Default | HuggingFace Default | Supported | |
| 153 | +| :--- | :----: | :----: | :----: | ---:| |
| 154 | +| top_k | The number of highest probability vocabulary tokens to keep for top-k-filtering | 0 | 50 | Yes |
| 155 | +| top_p | Keep the generated tokens where its cumulative probability is >= top_p | 0.0 | 1.0 | Yes |
| 156 | +| repetition_penalty | Penalty applied for generating new token. Existing token frequencies summed to subtraction the logit of its corresponding logit value | 0.0 | 1.0 | Yes | |
| 157 | +| temperature | The temperature to use when sampling from the probability distribution computed from the logits. Higher values will result in more random samples. Should be greater than 0.0 | 1.0 | 1.0 | Yes | |
| 158 | +| typical_p | - | - | - | No | |
| 159 | +| epsilon_cutoff | - | - | - | No | |
| 160 | +| eta_cutoff | - | - | - | No | |
| 161 | +| diversity_penalty | - | - | - | No | |
| 162 | +| length_penalty | - | - | - | No | |
| 163 | +| bad_words_ids | - | - | - | No | |
| 164 | +| force_words_ids | - | - | - | No | |
| 165 | +| renormalize_logits | - | - | - | No | |
| 166 | +| constraints | - | - | - | No | |
| 167 | +| forced_bos_token_id | - | - | - | No | |
| 168 | +| forced_eos_token_id | - | - | - | No | |
| 169 | +| remove_invalid_values | - | - | - | No | |
| 170 | +| exponential_decay_length_penalty | - | - | - | No | |
| 171 | +| suppress_tokens | - | - | - | No | |
| 172 | +| begin_suppress_tokens | - | - | - | No | |
| 173 | +| forced_decoder_ids | - | - | - | No | |
| 174 | + |
| 175 | +<br/> |
| 176 | +<h2> Parameters that control the generation strategy used </h2> |
| 177 | + |
| 178 | +| Feature | Description | Deepsparse Default | HuggingFace Default | Supported | |
| 179 | +| :--- | :----: | :----: | :----: | ---:| |
| 180 | +| do_sample | If True, will apply sampling from the probability distribution computed from the logits | False | False | Yes | |
| 181 | + |
| 182 | +<br/> |
| 183 | +<h2> Parameters for output variables: </h2> |
| 184 | + |
| 185 | +| Feature | Description | Deepsparse Default | HuggingFace Default | Supported | |
| 186 | +| :--- | :----: | :----: | :----: | ---:| |
| 187 | +| num_return_sequences | The number of sequences generated for each prompt | 1 | 1 | Yes | |
| 188 | +| output_scores | Whether to return the generated logits | False | False | Yes | |
| 189 | +| return_dict_generate | - | - | - | No | |
| 190 | + |
| 191 | +<br/> |
| 192 | +<h2> Special Tokens: </h2> |
| 193 | + |
| 194 | +| Feature | Description | Deepsparse Default | HuggingFace Default | Supported | |
| 195 | +| :--- | :----: | :----: | :----: | ---:| |
| 196 | +| pad_token_id | - | - | - | No | |
| 197 | +| bos_token_id | - | - | - | No | |
| 198 | +| eos_token_id | - | - | - | No | |
| 199 | + |
| 200 | + |
| 201 | +<br/> |
0 commit comments