forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_pynccl.py
307 lines (256 loc) · 11.5 KB
/
test_pynccl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import multiprocessing
import os
from typing import Dict, List
import pytest
import torch
import torch.distributed
from vllm.distributed.communication_op import ( # noqa
tensor_model_parallel_all_reduce)
from vllm.distributed.device_communicators.pynccl import PyNcclCommunicator
from vllm.distributed.device_communicators.pynccl_wrapper import NCCLLibrary
from vllm.distributed.parallel_state import (ensure_model_parallel_initialized,
get_world_group, graph_capture,
init_distributed_environment)
from vllm.utils import update_environment_variables
def distributed_run(fn, world_size):
number_of_processes = world_size
processes: List[multiprocessing.Process] = []
for i in range(number_of_processes):
env: Dict[str, str] = {}
env['RANK'] = str(i)
env['LOCAL_RANK'] = str(i)
env['WORLD_SIZE'] = str(number_of_processes)
env['LOCAL_WORLD_SIZE'] = str(number_of_processes)
env['MASTER_ADDR'] = 'localhost'
env['MASTER_PORT'] = '12345'
p = multiprocessing.Process(target=fn, args=(env, ))
processes.append(p)
p.start()
for p in processes:
p.join()
for p in processes:
assert p.exitcode == 0
def worker_fn_wrapper(fn):
# `multiprocessing.Process` cannot accept environment variables directly
# so we need to pass the environment variables as arguments
# and update the environment variables in the function
def wrapped_fn(env):
update_environment_variables(env)
local_rank = os.environ['LOCAL_RANK']
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
init_distributed_environment()
fn()
return wrapped_fn
@worker_fn_wrapper
def worker_fn():
pynccl_comm = PyNcclCommunicator(get_world_group().cpu_group,
device=get_world_group().device)
tensor = torch.ones(16, 1024, 1024,
dtype=torch.float32).cuda(pynccl_comm.rank)
with pynccl_comm.change_state(enable=True):
tensor = pynccl_comm.all_reduce(tensor)
result = tensor.mean().cpu().item()
assert result == pynccl_comm.world_size
@pytest.mark.skipif(torch.cuda.device_count() < 2,
reason="Need at least 2 GPUs to run the test.")
def test_pynccl():
distributed_run(worker_fn, 2)
@worker_fn_wrapper
def multiple_allreduce_worker_fn():
device = torch.device(f"cuda:{torch.distributed.get_rank()}")
groups = [
torch.distributed.new_group(ranks=[0, 1], backend="gloo"),
torch.distributed.new_group(ranks=[2, 3], backend="gloo")
]
group = groups[0] if torch.distributed.get_rank() in [0, 1] else groups[1]
pynccl_comm = PyNcclCommunicator(group=group, device=device)
tensor = torch.ones(16, 1024, 1024, dtype=torch.float32, device=device)
with pynccl_comm.change_state(enable=True):
# two groups can communicate independently
if torch.distributed.get_rank() in [0, 1]:
tensor = pynccl_comm.all_reduce(tensor)
tensor = pynccl_comm.all_reduce(tensor)
result = tensor.mean().cpu().item()
assert result == 4
else:
tensor = pynccl_comm.all_reduce(tensor)
result = tensor.mean().cpu().item()
assert result == 2
@pytest.mark.skipif(torch.cuda.device_count() < 4,
reason="Need at least 4 GPUs to run the test.")
def test_pynccl_multiple_allreduce():
# this tests pynccl for multiple tp groups, in a standalone way
# i.e. call `pynccl_comm.all_reduce` directly
distributed_run(multiple_allreduce_worker_fn, 4)
@worker_fn_wrapper
def multiple_allreduce_with_vllm_worker_fn():
device = torch.device(f"cuda:{torch.distributed.get_rank()}")
ensure_model_parallel_initialized(2, 2)
tensor = torch.ones(16, 1024, 1024, dtype=torch.float32, device=device)
with graph_capture():
# two tp groups can communicate independently
if torch.distributed.get_rank() in [0, 1]:
tensor = tensor_model_parallel_all_reduce(tensor)
tensor = tensor_model_parallel_all_reduce(tensor)
result = tensor.mean().cpu().item()
assert result == 4
else:
tensor = tensor_model_parallel_all_reduce(tensor)
result = tensor.mean().cpu().item()
assert result == 2
@pytest.mark.skipif(torch.cuda.device_count() < 4,
reason="Need at least 4 GPUs to run the test.")
def test_pynccl_multiple_allreduce_with_vllm():
# this tests pynccl for multiple tp groups, together with vllm
# i.e. call `tensor_model_parallel_all_reduce`
distributed_run(multiple_allreduce_with_vllm_worker_fn, 4)
@worker_fn_wrapper
def worker_fn_with_cudagraph():
with torch.no_grad():
graph = torch.cuda.CUDAGraph()
pynccl_comm = PyNcclCommunicator(get_world_group().cpu_group,
device=get_world_group().device)
# run something in the default stream to initialize torch engine
a = torch.ones((4, 4), device=f'cuda:{pynccl_comm.rank}')
torch.cuda.synchronize()
with torch.cuda.graph(
graph, stream=pynccl_comm.stream), pynccl_comm.change_state(
enable=True):
a_out = pynccl_comm.all_reduce(a)
pynccl_comm.stream.synchronize()
graph.replay()
pynccl_comm.stream.synchronize()
assert a_out.mean().cpu().item() == pynccl_comm.world_size**1
@worker_fn_wrapper
def all_gather_worker_fn():
pynccl_comm = PyNcclCommunicator(get_world_group().cpu_group,
device=get_world_group().device)
rank = pynccl_comm.rank
world_size = pynccl_comm.world_size
device = f'cuda:{pynccl_comm.rank}'
num_elems = 1000
tensor = torch.arange(num_elems, dtype=torch.float32,
device=device) + rank * num_elems
result = torch.zeros(num_elems * world_size,
dtype=torch.float32,
device=device)
expected = torch.cat([
torch.arange(num_elems, dtype=torch.float32) + r * num_elems
for r in range(world_size)
]).to(device)
with pynccl_comm.change_state(enable=True):
pynccl_comm.all_gather(result, tensor)
torch.testing.assert_close(result, expected, rtol=1e-5, atol=1e-8)
@pytest.mark.skipif(torch.cuda.device_count() < 2,
reason="Need at least 2 GPUs to run the test.")
def test_pynccl_all_gather():
distributed_run(all_gather_worker_fn, 2)
@worker_fn_wrapper
def reduce_scatter_worker_fn():
pynccl_comm = PyNcclCommunicator(get_world_group().cpu_group,
device=get_world_group().device)
rank = pynccl_comm.rank
world_size = pynccl_comm.world_size
device = f'cuda:{pynccl_comm.rank}'
num_elems = 1000
tensor = torch.arange(num_elems, dtype=torch.float32,
device=device) + rank * num_elems
assert (num_elems % world_size == 0)
result = torch.zeros(num_elems // world_size,
dtype=torch.float32,
device=device)
# Calculate expected result for this rank's chunk
scattered_size = num_elems // world_size
all_tensors = [
torch.arange(num_elems, dtype=torch.float32) + r * num_elems
for r in range(world_size)
]
expected = sum(tensor[rank * scattered_size:(rank + 1) * scattered_size]
for tensor in all_tensors).to(device)
with pynccl_comm.change_state(enable=True):
pynccl_comm.reduce_scatter(result, tensor)
torch.testing.assert_close(result, expected, rtol=1e-5, atol=1e-8)
@pytest.mark.skipif(torch.cuda.device_count() < 2,
reason="Need at least 2 GPUs to run the test.")
def test_pynccl_reduce_scatter():
distributed_run(reduce_scatter_worker_fn, 2)
@pytest.mark.skipif(torch.cuda.device_count() < 2,
reason="Need at least 2 GPUs to run the test.")
def test_pynccl_with_cudagraph():
distributed_run(worker_fn_with_cudagraph, 2)
@worker_fn_wrapper
def send_recv_worker_fn():
pynccl_comm = PyNcclCommunicator(get_world_group().cpu_group,
device=get_world_group().device)
if pynccl_comm.rank == 0:
tensor = torch.ones(16, 1024, 1024,
dtype=torch.float32).cuda(pynccl_comm.rank)
else:
tensor = torch.empty(16, 1024, 1024,
dtype=torch.float32).cuda(pynccl_comm.rank)
with pynccl_comm.change_state(enable=True):
if pynccl_comm.rank == 0:
pynccl_comm.send(tensor,
dst=(pynccl_comm.rank + 1) %
pynccl_comm.world_size)
else:
pynccl_comm.recv(tensor,
src=(pynccl_comm.rank - 1) %
pynccl_comm.world_size)
result = tensor.mean().cpu().item()
assert result == 1
@pytest.mark.skipif(torch.cuda.device_count() < 2,
reason="Need at least 2 GPUs to run the test.")
def test_pynccl_send_recv():
distributed_run(send_recv_worker_fn, 2)
@worker_fn_wrapper
def multiple_send_recv_worker_fn():
device = torch.device(f"cuda:{torch.distributed.get_rank()}")
groups = [
torch.distributed.new_group(ranks=[0, 2], backend="gloo"),
torch.distributed.new_group(ranks=[1, 3], backend="gloo")
]
group = groups[0] if torch.distributed.get_rank() in [0, 2] else groups[1]
pynccl_comm = PyNcclCommunicator(group=group, device=device)
if torch.distributed.get_rank() == 0:
tensor = torch.ones(16, 1024, 1024, dtype=torch.float32, device=device)
elif torch.distributed.get_rank() == 1:
tensor = 2 * torch.ones(
16, 1024, 1024, dtype=torch.float32, device=device)
else:
tensor = torch.empty(16,
1024,
1024,
dtype=torch.float32,
device=device)
with pynccl_comm.change_state(enable=True):
if torch.distributed.get_rank() in [0, 1]:
pynccl_comm.send(tensor,
dst=(pynccl_comm.rank + 1) %
pynccl_comm.world_size)
else:
pynccl_comm.recv(tensor,
src=(pynccl_comm.rank - 1) %
pynccl_comm.world_size)
result = tensor.mean().cpu().item()
if torch.distributed.get_rank() in [0, 2]:
assert result == 1
else:
assert result == 2
@pytest.mark.skipif(torch.cuda.device_count() < 4,
reason="Need at least 4 GPUs to run the test.")
def test_pynccl_multiple_send_recv():
distributed_run(multiple_send_recv_worker_fn, 4)
def test_ncclGetUniqueId():
lib = NCCLLibrary()
unique_id = lib.ncclGetUniqueId()
# `list(unique_id.internal)` is something like this:
# [34, -16, 23, 83, 109, -19, 59, 95, 2, 0, -86, 55, 10, -128, 0, 29, 0,
# 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
# 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
# 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
# 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
# 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
# as long as the function doesn't raise an exception, we're good
assert unique_id is not None