|
1220 | 1220 | "properties": {
|
1221 | 1221 | "maxSurge": {
|
1222 | 1222 | "$ref": "#/definitions/io.k8s.apimachinery.pkg.util.intstr.IntOrString",
|
1223 |
| - "description": "The maximum number of nodes with an existing available DaemonSet pod that can have an updated DaemonSet pod during during an update. Value can be an absolute number (ex: 5) or a percentage of desired pods (ex: 10%). This can not be 0 if MaxUnavailable is 0. Absolute number is calculated from percentage by rounding up to a minimum of 1. Default value is 0. Example: when this is set to 30%, at most 30% of the total number of nodes that should be running the daemon pod (i.e. status.desiredNumberScheduled) can have their a new pod created before the old pod is marked as deleted. The update starts by launching new pods on 30% of nodes. Once an updated pod is available (Ready for at least minReadySeconds) the old DaemonSet pod on that node is marked deleted. If the old pod becomes unavailable for any reason (Ready transitions to false, is evicted, or is drained) an updated pod is immediatedly created on that node without considering surge limits. Allowing surge implies the possibility that the resources consumed by the daemonset on any given node can double if the readiness check fails, and so resource intensive daemonsets should take into account that they may cause evictions during disruption. This is beta field and enabled/disabled by DaemonSetUpdateSurge feature gate." |
| 1223 | + "description": "The maximum number of nodes with an existing available DaemonSet pod that can have an updated DaemonSet pod during during an update. Value can be an absolute number (ex: 5) or a percentage of desired pods (ex: 10%). This can not be 0 if MaxUnavailable is 0. Absolute number is calculated from percentage by rounding up to a minimum of 1. Default value is 0. Example: when this is set to 30%, at most 30% of the total number of nodes that should be running the daemon pod (i.e. status.desiredNumberScheduled) can have their a new pod created before the old pod is marked as deleted. The update starts by launching new pods on 30% of nodes. Once an updated pod is available (Ready for at least minReadySeconds) the old DaemonSet pod on that node is marked deleted. If the old pod becomes unavailable for any reason (Ready transitions to false, is evicted, or is drained) an updated pod is immediatedly created on that node without considering surge limits. Allowing surge implies the possibility that the resources consumed by the daemonset on any given node can double if the readiness check fails, and so resource intensive daemonsets should take into account that they may cause evictions during disruption." |
1224 | 1224 | },
|
1225 | 1225 | "maxUnavailable": {
|
1226 | 1226 | "$ref": "#/definitions/io.k8s.apimachinery.pkg.util.intstr.IntOrString",
|
|
1259 | 1259 | "type": "object"
|
1260 | 1260 | },
|
1261 | 1261 | "io.k8s.api.apps.v1.StatefulSet": {
|
1262 |
| - "description": "StatefulSet represents a set of pods with consistent identities. Identities are defined as:\n - Network: A single stable DNS and hostname.\n - Storage: As many VolumeClaims as requested.\nThe StatefulSet guarantees that a given network identity will always map to the same storage identity.", |
| 1262 | + "description": "StatefulSet represents a set of pods with consistent identities. Identities are defined as:\n - Network: A single stable DNS and hostname.\n - Storage: As many VolumeClaims as requested.\n\nThe StatefulSet guarantees that a given network identity will always map to the same storage identity.", |
1263 | 1263 | "properties": {
|
1264 | 1264 | "apiVersion": {
|
1265 | 1265 | "description": "APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources",
|
|
5373 | 5373 | "x-kubernetes-map-type": "atomic"
|
5374 | 5374 | },
|
5375 | 5375 | "io.k8s.api.core.v1.EndpointSubset": {
|
5376 |
| - "description": "EndpointSubset is a group of addresses with a common set of ports. The expanded set of endpoints is the Cartesian product of Addresses x Ports. For example, given:\n {\n Addresses: [{\"ip\": \"10.10.1.1\"}, {\"ip\": \"10.10.2.2\"}],\n Ports: [{\"name\": \"a\", \"port\": 8675}, {\"name\": \"b\", \"port\": 309}]\n }\nThe resulting set of endpoints can be viewed as:\n a: [ 10.10.1.1:8675, 10.10.2.2:8675 ],\n b: [ 10.10.1.1:309, 10.10.2.2:309 ]", |
| 5376 | + "description": "EndpointSubset is a group of addresses with a common set of ports. The expanded set of endpoints is the Cartesian product of Addresses x Ports. For example, given:\n\n\t{\n\t Addresses: [{\"ip\": \"10.10.1.1\"}, {\"ip\": \"10.10.2.2\"}],\n\t Ports: [{\"name\": \"a\", \"port\": 8675}, {\"name\": \"b\", \"port\": 309}]\n\t}\n\nThe resulting set of endpoints can be viewed as:\n\n\ta: [ 10.10.1.1:8675, 10.10.2.2:8675 ],\n\tb: [ 10.10.1.1:309, 10.10.2.2:309 ]", |
5377 | 5377 | "properties": {
|
5378 | 5378 | "addresses": {
|
5379 | 5379 | "description": "IP addresses which offer the related ports that are marked as ready. These endpoints should be considered safe for load balancers and clients to utilize.",
|
|
5400 | 5400 | "type": "object"
|
5401 | 5401 | },
|
5402 | 5402 | "io.k8s.api.core.v1.Endpoints": {
|
5403 |
| - "description": "Endpoints is a collection of endpoints that implement the actual service. Example:\n Name: \"mysvc\",\n Subsets: [\n {\n Addresses: [{\"ip\": \"10.10.1.1\"}, {\"ip\": \"10.10.2.2\"}],\n Ports: [{\"name\": \"a\", \"port\": 8675}, {\"name\": \"b\", \"port\": 309}]\n },\n {\n Addresses: [{\"ip\": \"10.10.3.3\"}],\n Ports: [{\"name\": \"a\", \"port\": 93}, {\"name\": \"b\", \"port\": 76}]\n },\n ]", |
| 5403 | + "description": "Endpoints is a collection of endpoints that implement the actual service. Example:\n\n\t Name: \"mysvc\",\n\t Subsets: [\n\t {\n\t Addresses: [{\"ip\": \"10.10.1.1\"}, {\"ip\": \"10.10.2.2\"}],\n\t Ports: [{\"name\": \"a\", \"port\": 8675}, {\"name\": \"b\", \"port\": 309}]\n\t },\n\t {\n\t Addresses: [{\"ip\": \"10.10.3.3\"}],\n\t Ports: [{\"name\": \"a\", \"port\": 93}, {\"name\": \"b\", \"port\": 76}]\n\t },\n\t]", |
5404 | 5404 | "properties": {
|
5405 | 5405 | "apiVersion": {
|
5406 | 5406 | "description": "APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources",
|
|
7802 | 7802 | "type": "object"
|
7803 | 7803 | },
|
7804 | 7804 | "io.k8s.api.core.v1.PodIP": {
|
7805 |
| - "description": "IP address information for entries in the (plural) PodIPs field. Each entry includes:\n IP: An IP address allocated to the pod. Routable at least within the cluster.", |
| 7805 | + "description": "IP address information for entries in the (plural) PodIPs field. Each entry includes:\n\n\tIP: An IP address allocated to the pod. Routable at least within the cluster.", |
7806 | 7806 | "properties": {
|
7807 | 7807 | "ip": {
|
7808 | 7808 | "description": "ip is an IP address (IPv4 or IPv6) assigned to the pod",
|
|
10749 | 10749 | ]
|
10750 | 10750 | },
|
10751 | 10751 | "io.k8s.api.flowcontrol.v1beta1.LimitedPriorityLevelConfiguration": {
|
10752 |
| - "description": "LimitedPriorityLevelConfiguration specifies how to handle requests that are subject to limits. It addresses two issues:\n * How are requests for this priority level limited?\n * What should be done with requests that exceed the limit?", |
| 10752 | + "description": "LimitedPriorityLevelConfiguration specifies how to handle requests that are subject to limits. It addresses two issues:\n - How are requests for this priority level limited?\n - What should be done with requests that exceed the limit?", |
10753 | 10753 | "properties": {
|
10754 | 10754 | "assuredConcurrencyShares": {
|
10755 | 10755 | "description": "`assuredConcurrencyShares` (ACS) configures the execution limit, which is a limit on the number of requests of this priority level that may be exeucting at a given time. ACS must be a positive number. The server's concurrency limit (SCL) is divided among the concurrency-controlled priority levels in proportion to their assured concurrency shares. This produces the assured concurrency value (ACV) --- the number of requests that may be executing at a time --- for each such priority level:\n\n ACV(l) = ceil( SCL * ACS(l) / ( sum[priority levels k] ACS(k) ) )\n\nbigger numbers of ACS mean more reserved concurrent requests (at the expense of every other PL). This field has a default value of 30.",
|
|
11310 | 11310 | ]
|
11311 | 11311 | },
|
11312 | 11312 | "io.k8s.api.flowcontrol.v1beta2.LimitedPriorityLevelConfiguration": {
|
11313 |
| - "description": "LimitedPriorityLevelConfiguration specifies how to handle requests that are subject to limits. It addresses two issues:\n * How are requests for this priority level limited?\n * What should be done with requests that exceed the limit?", |
| 11313 | + "description": "LimitedPriorityLevelConfiguration specifies how to handle requests that are subject to limits. It addresses two issues:\n - How are requests for this priority level limited?\n - What should be done with requests that exceed the limit?", |
11314 | 11314 | "properties": {
|
11315 | 11315 | "assuredConcurrencyShares": {
|
11316 | 11316 | "description": "`assuredConcurrencyShares` (ACS) configures the execution limit, which is a limit on the number of requests of this priority level that may be exeucting at a given time. ACS must be a positive number. The server's concurrency limit (SCL) is divided among the concurrency-controlled priority levels in proportion to their assured concurrency shares. This produces the assured concurrency value (ACV) --- the number of requests that may be executing at a time --- for each such priority level:\n\n ACV(l) = ceil( SCL * ACS(l) / ( sum[priority levels k] ACS(k) ) )\n\nbigger numbers of ACS mean more reserved concurrent requests (at the expense of every other PL). This field has a default value of 30.",
|
|
15667 | 15667 | ]
|
15668 | 15668 | },
|
15669 | 15669 | "io.k8s.apimachinery.pkg.runtime.RawExtension": {
|
15670 |
| - "description": "RawExtension is used to hold extensions in external versions.\n\nTo use this, make a field which has RawExtension as its type in your external, versioned struct, and Object in your internal struct. You also need to register your various plugin types.\n\n// Internal package: type MyAPIObject struct {\n\truntime.TypeMeta `json:\",inline\"`\n\tMyPlugin runtime.Object `json:\"myPlugin\"`\n} type PluginA struct {\n\tAOption string `json:\"aOption\"`\n}\n\n// External package: type MyAPIObject struct {\n\truntime.TypeMeta `json:\",inline\"`\n\tMyPlugin runtime.RawExtension `json:\"myPlugin\"`\n} type PluginA struct {\n\tAOption string `json:\"aOption\"`\n}\n\n// On the wire, the JSON will look something like this: {\n\t\"kind\":\"MyAPIObject\",\n\t\"apiVersion\":\"v1\",\n\t\"myPlugin\": {\n\t\t\"kind\":\"PluginA\",\n\t\t\"aOption\":\"foo\",\n\t},\n}\n\nSo what happens? Decode first uses json or yaml to unmarshal the serialized data into your external MyAPIObject. That causes the raw JSON to be stored, but not unpacked. The next step is to copy (using pkg/conversion) into the internal struct. The runtime package's DefaultScheme has conversion functions installed which will unpack the JSON stored in RawExtension, turning it into the correct object type, and storing it in the Object. (TODO: In the case where the object is of an unknown type, a runtime.Unknown object will be created and stored.)", |
| 15670 | + "description": "RawExtension is used to hold extensions in external versions.\n\nTo use this, make a field which has RawExtension as its type in your external, versioned struct, and Object in your internal struct. You also need to register your various plugin types.\n\n// Internal package:\n\n\ttype MyAPIObject struct {\n\t\truntime.TypeMeta `json:\",inline\"`\n\t\tMyPlugin runtime.Object `json:\"myPlugin\"`\n\t}\n\n\ttype PluginA struct {\n\t\tAOption string `json:\"aOption\"`\n\t}\n\n// External package:\n\n\ttype MyAPIObject struct {\n\t\truntime.TypeMeta `json:\",inline\"`\n\t\tMyPlugin runtime.RawExtension `json:\"myPlugin\"`\n\t}\n\n\ttype PluginA struct {\n\t\tAOption string `json:\"aOption\"`\n\t}\n\n// On the wire, the JSON will look something like this:\n\n\t{\n\t\t\"kind\":\"MyAPIObject\",\n\t\t\"apiVersion\":\"v1\",\n\t\t\"myPlugin\": {\n\t\t\t\"kind\":\"PluginA\",\n\t\t\t\"aOption\":\"foo\",\n\t\t},\n\t}\n\nSo what happens? Decode first uses json or yaml to unmarshal the serialized data into your external MyAPIObject. That causes the raw JSON to be stored, but not unpacked. The next step is to copy (using pkg/conversion) into the internal struct. The runtime package's DefaultScheme has conversion functions installed which will unpack the JSON stored in RawExtension, turning it into the correct object type, and storing it in the Object. (TODO: In the case where the object is of an unknown type, a runtime.Unknown object will be created and stored.)", |
15671 | 15671 | "type": "object"
|
15672 | 15672 | },
|
15673 | 15673 | "io.k8s.apimachinery.pkg.util.intstr.IntOrString": {
|
|
0 commit comments