forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathlayers.py
326 lines (288 loc) · 13.1 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Parts of the code here are adapted from PyTorch
# repo: https://github.com/pytorch/pytorch
import math
import torch
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn.parameter import Parameter
from apex.normalization.fused_layer_norm import FusedLayerNorm as LayerNorm
from .initialize import get_model_parallel_rank
from .initialize import get_model_parallel_world_size
from .mappings import copy_to_model_parallel_region
from .mappings import gather_from_model_parallel_region
from .mappings import reduce_from_model_parallel_region
from .mappings import scatter_to_model_parallel_region
from .random import get_cuda_rng_tracker
from .utils import divide
from .utils import split_tensor_along_last_dim
from .utils import VocabUtility
def _initialize_affine_weight(weight, output_size, input_size,
per_partition_size, partition_dim, init_method,
stride=1, return_master_weight=False):
"""Initialize affine weight for model parallel.
Build the master weight on all processes and scatter
the relevant chunk."""
# If we only use 1 process for model parallelism, bypass scatter.
world_size = get_model_parallel_world_size()
if world_size == 1:
init_method(weight)
if return_master_weight:
return weight
return None
# Initialize master weight
master_weight = torch.empty(output_size, input_size,
dtype=weight.dtype,
requires_grad=False)
init_method(master_weight, gain=1 / math.sqrt(2))
# Split and copy
per_partition_per_stride_size = divide(per_partition_size, stride)
weight_list = torch.split(master_weight, per_partition_per_stride_size,
dim=partition_dim)
rank = get_model_parallel_rank()
my_weight_list = weight_list[rank::world_size]
with torch.no_grad():
torch.cat(my_weight_list, dim=partition_dim, out=weight)
if return_master_weight:
return master_weight
return None
class VocabParallelEmbedding(torch.nn.Module):
"""Embedding parallelized in the vocabulary dimension.
This is mainly adapted from torch.nn.Embedding and all the default
values are kept.
Arguments:
num_embeddings: vocabulary size.
embedding_dim: size of hidden state.
init_method: method to initialize weights.
"""
def __init__(self, num_embeddings, embedding_dim, padding_idx,
init_method=init.xavier_uniform_):
super(VocabParallelEmbedding, self).__init__()
# Keep the input dimensions.
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
# Set the detauls for compatibility.
self.padding_idx = padding_idx
self.max_norm = None
self.norm_type = 2.
self.scale_grad_by_freq = False
self.sparse = False
self._weight = None
# Divide the weight matrix along the vocaburaly dimension.
self.vocab_start_index, self.vocab_end_index = \
VocabUtility.vocab_range_from_global_vocab_size(
self.num_embeddings, get_model_parallel_rank(),
get_model_parallel_world_size())
self.num_embeddings_per_partition = self.vocab_end_index - \
self.vocab_start_index
# Allocate weights.
self.weight = Parameter(torch.Tensor(self.num_embeddings_per_partition,
self.embedding_dim))
self.weight.model_parallel = True
# And initialize.
_initialize_affine_weight(
self.weight, self.num_embeddings, self.embedding_dim,
self.num_embeddings_per_partition, 0, init_method)
def forward(self, input_):
# Build the mask.
input_mask = (input_ < self.vocab_start_index) | \
(input_ >= self.vocab_end_index)
# Mask the input.
masked_input = input_.clone() - self.vocab_start_index
masked_input[input_mask] = 0
# Get the embeddings.
output_parallel = F.embedding(masked_input, self.weight,
self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq,
self.sparse)
# Mask the output embedding.
output_parallel[input_mask, :] = 0.0
# Reduce across all the model parallel GPUs.
output = reduce_from_model_parallel_region(output_parallel)
return output
class ParallelEmbedding(torch.nn.Module):
"""Embedding parallelized in the embedding dimension.
This is mainly adapted from torch.nn.Embedding and all the default
values are kept.
Arguments:
num_embeddings: vocabulary size.
embedding_dim: size of hidden state.
init_method: method to initialize weights.
"""
def __init__(self, num_embeddings, embedding_dim,
init_method=init.xavier_uniform_,
keep_master_weight_for_test=False):
super(ParallelEmbedding, self).__init__()
# Keep the input dimensions.
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
# Set some detauls for compatibility.
self.padding_idx = None
self.max_norm = None
self.norm_type = 2.
self.scale_grad_by_freq = False
self.sparse = False
self._weight = None
# Divide the weight matrix along the embedding dimension.
world_size = get_model_parallel_world_size()
self.embedding_dim_per_partition = divide(self.embedding_dim,
world_size)
# Allocate weights.
self.weight = Parameter(torch.Tensor(self.num_embeddings,
self.embedding_dim_per_partition))
self.weight.model_parallel = True
# And initialize.
_initialize_affine_weight(
self.weight, self.num_embeddings, self.embedding_dim,
self.embedding_dim_per_partition, 1, init_method,
stride=1, return_master_weight=False)
def forward(self, input_):
input_parallel = copy_to_model_parallel_region(input_)
output_parallel = F.embedding(input_parallel, self.weight,
self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq,
self.sparse)
output = gather_from_model_parallel_region(output_parallel)
return output
class ColumnParallelLinear(torch.nn.Module):
"""Linear layer with column parallelism.
The linear layer is defined as Y = XA + b. A is parallelized along
its second dimension as A = [A_1, ..., A_p].
Arguments:
input_size: first dimension of matrix A.
output_size: second dimension of matrix A.
bias: If true, add bias
gather_output: If true, call all-gether on output and make Y avaiable
to all GPUs, otherwise, every GPU will have its output
which is Y_i = XA_i
init_method: method to initialize weights. Note that bias is always set
to zero.
stride: For the strided linear layers.
keep_master_weight_for_test: This was added for testing and should be
set to False. It returns the master weights
used for initialization.
"""
def __init__(self, input_size, output_size, bias=True, gather_output=True,
init_method=init.xavier_uniform_, stride=1,
keep_master_weight_for_test=False):
super(ColumnParallelLinear, self).__init__()
# Keep input parameters
self.input_size = input_size
self.output_size = output_size
self.gather_output = gather_output
# Divide the weight matrix along the last dimension.
world_size = get_model_parallel_world_size()
self.output_size_per_partition = divide(output_size, world_size)
# Parameters.
# Note: torch.nn.functional.linear performs XA^T + b and as a result
# we allocate the transpose.
self.weight = Parameter(torch.Tensor(self.output_size_per_partition,
self.input_size))
self.weight.model_parallel = True
if bias:
self.bias = Parameter(torch.Tensor(self.output_size_per_partition))
self.bias.model_parallel = True
# Always initialize bias to zero.
with torch.no_grad():
self.bias.zero_()
else:
self.register_parameter('bias', None)
# Initialize weight.
self.master_weight = _initialize_affine_weight(
self.weight, self.output_size, self.input_size,
self.output_size_per_partition, 0, init_method,
stride=stride, return_master_weight=keep_master_weight_for_test)
def forward(self, input_):
# Set up backprop all-reduce.
input_parallel = copy_to_model_parallel_region(input_)
# Matrix multiply.
output_parallel = F.linear(input_parallel, self.weight, self.bias)
if self.gather_output:
# All-gather across the partitions.
output = gather_from_model_parallel_region(output_parallel)
else:
output = output_parallel
return output
class RowParallelLinear(torch.nn.Module):
"""Linear layer with row parallelism.
The linear layer is defined as Y = XA + b. A is parallelized along
its first dimension and X along its second dimension as:
- -
| A_1 |
| . |
A = | . | X = [X_1, ..., X_p]
| . |
| A_p |
- -
Arguments:
input_size: first dimension of matrix A.
output_size: second dimension of matrix A.
bias: If true, add bias. Note that bias is not parallelized.
input_is_parallel: If true, we assume that the input is already
split across the GPUs and we do not split
again.
init_method: method to initialize weights. Note that bias is always set
to zero.
stride: For the strided linear layers.
keep_master_weight_for_test: This was added for testing and should be
set to False. It returns the master weights
used for initialization.
"""
def __init__(self, input_size, output_size, bias=True,
input_is_parallel=False,
init_method=init.xavier_uniform_, stride=1,
keep_master_weight_for_test=False):
super(RowParallelLinear, self).__init__()
# Keep input parameters
self.input_size = input_size
self.output_size = output_size
self.input_is_parallel = input_is_parallel
# Divide the weight matrix along the last dimension.
world_size = get_model_parallel_world_size()
self.input_size_per_partition = divide(input_size, world_size)
# Parameters.
# Note: torch.nn.functional.linear performs XA^T + b and as a result
# we allocate the transpose.
self.weight = Parameter(torch.Tensor(self.output_size,
self.input_size_per_partition))
self.weight.model_parallel = True
if bias:
self.bias = Parameter(torch.Tensor(self.output_size))
# Always initialize bias to zero.
with torch.no_grad():
self.bias.zero_()
else:
self.register_parameter('bias', None)
# Initialize weight.
self.master_weight = _initialize_affine_weight(
self.weight, self.output_size, self.input_size,
self.input_size_per_partition, 1, init_method,
stride=stride, return_master_weight=keep_master_weight_for_test)
def forward(self, input_):
# Set up backprop all-reduce.
if self.input_is_parallel:
input_parallel = input_
else:
input_parallel = scatter_to_model_parallel_region(input_)
# Matrix multiply.
output_parallel = F.linear(input_parallel, self.weight)
# All-reduce across all the partitions.
output_ = reduce_from_model_parallel_region(output_parallel)
if self.bias is not None:
output = output_ + self.bias
else:
output = output_
return output