-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathnep-0030-duck-array-protocol.html
746 lines (555 loc) · 44 KB
/
nep-0030-duck-array-protocol.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
<!DOCTYPE html>
<html lang="en" data-content_root="./" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>NEP 30 — Duck typing for NumPy arrays - implementation — NumPy Enhancement Proposals</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=03e43079" />
<!-- So that users can add custom icons -->
<script src="_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="_static/documentation_options.js?v=7f41d439"></script>
<script src="_static/doctools.js?v=888ff710"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'nep-0030-duck-array-protocol';</script>
<link rel="icon" href="_static/favicon.ico"/>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="NEP 31 — Context-local and global overrides of the NumPy API" href="nep-0031-uarray.html" />
<link rel="prev" title="NEP 26 — Summary of missing data NEPs and discussion" href="nep-0026-missing-data-summary.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="" />
<meta name="docbuild:last-update" content="Apr 17, 2025"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="content.html">
<img src="_static/numpylogo.svg" class="logo__image only-light" alt="NumPy Enhancement Proposals - Home"/>
<img src="_static/numpylogo_dark.svg" class="logo__image only-dark pst-js-only" alt="NumPy Enhancement Proposals - Home"/>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="index.html">
Index
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="scope.html">
The Scope of NumPy
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="roadmap.html">
Current roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wishlist
</a>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="index.html">
Index
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="scope.html">
The Scope of NumPy
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="roadmap.html">
Current roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wishlist
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="scope.html">The Scope of NumPy</a></li>
<li class="toctree-l1"><a class="reference internal" href="roadmap.html">Current roadmap</a></li>
</ul>
<ul class="current nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="meta.html">Meta-NEPs (NEPs about NEPs or active Processes)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0000.html">NEP 0 — Purpose and process</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0023-backwards-compatibility.html">NEP 23 — Backwards compatibility and deprecation policy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0036-fair-play.html">NEP 36 — Fair play</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0045-c_style_guide.html">NEP 45 — C style guide</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0046-sponsorship-guidelines.html">NEP 46 — NumPy sponsorship guidelines</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0048-spending-project-funds.html">NEP 48 — Spending NumPy project funds</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-template.html">NEP X — Template and instructions</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="provisional.html">Provisional NEPs (provisionally accepted; interface may change)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="simple">
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="accepted.html">Accepted NEPs (implementation in progress)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0041-improved-dtype-support.html">NEP 41 — First step towards a new datatype system</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0042-new-dtypes.html">NEP 42 — New and extensible DTypes</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0044-restructuring-numpy-docs.html">NEP 44 — Restructuring the NumPy documentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0051-scalar-representation.html">NEP 51 — Changing the representation of NumPy scalars</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0054-simd-cpp-highway.html">NEP 54 — SIMD infrastructure evolution: adopting Google Highway when moving to C++</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="open.html">Open NEPs (under consideration)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0043-extensible-ufuncs.html">NEP 43 — Enhancing the extensibility of UFuncs</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0053-c-abi-evolution.html">NEP 53 — Evolving the NumPy C-API for NumPy 2.0</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="finished.html">Finished NEPs</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0001-npy-format.html">NEP 1 — A simple file format for NumPy arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0005-generalized-ufuncs.html">NEP 5 — Generalized universal functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0007-datetime-proposal.html">NEP 7 — A proposal for implementing some date/time types in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0010-new-iterator-ufunc.html">NEP 10 — Optimizing iterator/UFunc performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0013-ufunc-overrides.html">NEP 13 — A mechanism for overriding Ufuncs</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0014-dropping-python2.7-proposal.html">NEP 14 — Plan for dropping Python 2.7 support</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0015-merge-multiarray-umath.html">NEP 15 — Merging multiarray and umath</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0018-array-function-protocol.html">NEP 18 — A dispatch mechanism for NumPy's high level array functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0019-rng-policy.html">NEP 19 — Random number generator policy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0020-gufunc-signature-enhancement.html">NEP 20 — Expansion of generalized universal function signatures</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0022-ndarray-duck-typing-overview.html">NEP 22 — Duck typing for NumPy arrays – high level overview</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0027-zero-rank-arrarys.html">NEP 27 — Zero rank arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0028-website-redesign.html">NEP 28 — numpy.org website redesign</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0029-deprecation_policy.html">NEP 29 — Recommend Python and NumPy version support as a community policy standard</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0032-remove-financial-functions.html">NEP 32 — Remove the financial functions from NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0034-infer-dtype-is-object.html">NEP 34 — Disallow inferring ``dtype=object`` from sequences</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0035-array-creation-dispatch-with-array-function.html">NEP 35 — Array creation dispatching with __array_function__</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0038-SIMD-optimizations.html">NEP 38 — Using SIMD optimization instructions for performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0040-legacy-datatype-impl.html">NEP 40 — Legacy datatype implementation in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0049.html">NEP 49 — Data allocation strategies</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0050-scalar-promotion.html">NEP 50 — Promotion rules for Python scalars</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0052-python-api-cleanup.html">NEP 52 — Python API cleanup for NumPy 2.0</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0055-string_dtype.html">NEP 55 — Add a UTF-8 variable-width string DType to NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0056-array-api-main-namespace.html">NEP 56 — Array API standard support in NumPy's main namespace</a></li>
</ul>
</details></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="deferred.html">Deferred and Superseded NEPs</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="nep-0002-warnfix.html">NEP 2 — A proposal to build numpy without warning with a big set of warning flags</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0003-math_config_clean.html">NEP 3 — Cleaning the math configuration of numpy.core</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0004-datetime-proposal3.html">NEP 4 — A (third) proposal for implementing some date/time types in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0006-newbugtracker.html">NEP 6 — Replacing Trac with a different bug tracker</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0008-groupby_additions.html">NEP 8 — A proposal for adding groupby functionality to NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0009-structured_array_extensions.html">NEP 9 — Structured array extensions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0011-deferred-ufunc-evaluation.html">NEP 11 — Deferred UFunc evaluation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0012-missing-data.html">NEP 12 — Missing data functionality in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0021-advanced-indexing.html">NEP 21 — Simplified and explicit advanced indexing</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0024-missing-data-2.html">NEP 24 — Missing data functionality - alternative 1 to NEP 12</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0025-missing-data-3.html">NEP 25 — NA support via special dtypes</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0026-missing-data-summary.html">NEP 26 — Summary of missing data NEPs and discussion</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">NEP 30 — Duck typing for NumPy arrays - implementation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0031-uarray.html">NEP 31 — Context-local and global overrides of the NumPy API</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0037-array-module.html">NEP 37 — A dispatch protocol for NumPy-like modules</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0047-array-api-standard.html">NEP 47 — Adopting the array API standard</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="rejected.html">Rejected and Withdrawn NEPs</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0016-abstract-array.html">NEP 16 — An abstract base class for identifying "duck arrays"</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0017-split-out-maskedarray.html">NEP 17 — Split out masked arrays</a></li>
</ul>
</details></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
<div class="sidebar-primary-item">
<div id="ethical-ad-placement"
class="flat"
data-ea-publisher="readthedocs"
data-ea-type="readthedocs-sidebar"
data-ea-manual="true">
</div></div>
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="content.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="index.html" class="nav-link">Roadmap & NumPy enhancement proposals</a></li>
<li class="breadcrumb-item"><a href="deferred.html" class="nav-link">Deferred and Superseded NEPs</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">NEP 30 — Duck typing for NumPy arrays - implementation</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="nep-30-duck-typing-for-numpy-arrays-implementation">
<span id="nep30"></span><h1>NEP 30 — Duck typing for NumPy arrays - implementation<a class="headerlink" href="#nep-30-duck-typing-for-numpy-arrays-implementation" title="Link to this heading">#</a></h1>
<dl class="field-list simple">
<dt class="field-odd">Author<span class="colon">:</span></dt>
<dd class="field-odd"><p>Peter Andreas Entschev <<a class="reference external" href="mailto:pentschev%40nvidia.com">pentschev<span>@</span>nvidia<span>.</span>com</a>></p>
</dd>
<dt class="field-even">Author<span class="colon">:</span></dt>
<dd class="field-even"><p>Stephan Hoyer <<a class="reference external" href="mailto:shoyer%40google.com">shoyer<span>@</span>google<span>.</span>com</a>></p>
</dd>
<dt class="field-odd">Status<span class="colon">:</span></dt>
<dd class="field-odd"><p>Superseded</p>
</dd>
<dt class="field-even">Replaced-By<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference internal" href="nep-0056-array-api-main-namespace.html#nep56"><span class="std std-ref">NEP 56 — Array API standard support in NumPy’s main namespace</span></a></p>
</dd>
<dt class="field-odd">Type<span class="colon">:</span></dt>
<dd class="field-odd"><p>Standards Track</p>
</dd>
<dt class="field-even">Created<span class="colon">:</span></dt>
<dd class="field-even"><p>2019-07-31</p>
</dd>
<dt class="field-odd">Updated<span class="colon">:</span></dt>
<dd class="field-odd"><p>2019-07-31</p>
</dd>
<dt class="field-even">Resolution<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference external" href="https://mail.python.org/archives/list/numpy-discussion@python.org/message/Z6AA5CL47NHBNEPTFWYOTSUVSRDGHYPN/">https://mail.python.org/archives/list/numpy-discussion@python.org/message/Z6AA5CL47NHBNEPTFWYOTSUVSRDGHYPN/</a></p>
</dd>
</dl>
<section id="abstract">
<h2>Abstract<a class="headerlink" href="#abstract" title="Link to this heading">#</a></h2>
<p>We propose the <code class="docutils literal notranslate"><span class="pre">__duckarray__</span></code> protocol, following the high-level overview
described in NEP 22, allowing downstream libraries to return arrays of their
defined types, in contrast to <code class="docutils literal notranslate"><span class="pre">np.asarray</span></code>, that coerces those <code class="docutils literal notranslate"><span class="pre">array_like</span></code>
objects to NumPy arrays.</p>
</section>
<section id="detailed-description">
<h2>Detailed description<a class="headerlink" href="#detailed-description" title="Link to this heading">#</a></h2>
<p>NumPy’s API, including array definitions, is implemented and mimicked in
countless other projects. By definition, many of those arrays are fairly
similar in how they operate to the NumPy standard. The introduction of
<code class="docutils literal notranslate"><span class="pre">__array_function__</span></code> allowed dispatching of functions implemented by several
of these projects directly via NumPy’s API. This introduces a new requirement,
returning the NumPy-like array itself, rather than forcing a coercion into a
pure NumPy array.</p>
<p>For the purpose above, NEP 22 introduced the concept of duck typing to NumPy
arrays. The suggested solution described in the NEP allows libraries to avoid
coercion of a NumPy-like array to a pure NumPy array where necessary, while
still allowing that NumPy-like array libraries that do not wish to implement
the protocol to coerce arrays to a pure NumPy array via <code class="docutils literal notranslate"><span class="pre">np.asarray</span></code>.</p>
<section id="usage-guidance">
<h3>Usage Guidance<a class="headerlink" href="#usage-guidance" title="Link to this heading">#</a></h3>
<p>Code that uses <code class="docutils literal notranslate"><span class="pre">np.duckarray</span></code> is meant for supporting other ndarray-like objects
that “follow the NumPy API”. That is an ill-defined concept at the moment –
every known library implements the NumPy API only partly, and many deviate
intentionally in at least some minor ways. This cannot be easily remedied, so
for users of <code class="docutils literal notranslate"><span class="pre">np.duckarray</span></code> we recommend the following strategy: check if the
NumPy functionality used by the code that follows your use of <code class="docutils literal notranslate"><span class="pre">np.duckarray</span></code>
is present in Dask, CuPy and Sparse. If so, it’s reasonable to expect any duck
array to work here. If not, we suggest you indicate in your docstring what kinds
of duck arrays are accepted, or what properties they need to have.</p>
<p>To exemplify the usage of duck arrays, suppose one wants to take the <code class="docutils literal notranslate"><span class="pre">mean()</span></code>
of an array-like object <code class="docutils literal notranslate"><span class="pre">arr</span></code>. Using NumPy to achieve that, one could write
<code class="docutils literal notranslate"><span class="pre">np.asarray(arr).mean()</span></code> to achieve the intended result. If <code class="docutils literal notranslate"><span class="pre">arr</span></code> is not
a NumPy array, this would create an actual NumPy array in order to call
<code class="docutils literal notranslate"><span class="pre">.mean()</span></code>. However, if the array is an object that is compliant with the NumPy
API (either in full or partially) such as a CuPy, Sparse or a Dask array, then
that copy would have been unnecessary. On the other hand, if one were to use the new
<code class="docutils literal notranslate"><span class="pre">__duckarray__</span></code> protocol: <code class="docutils literal notranslate"><span class="pre">np.duckarray(arr).mean()</span></code>, and <code class="docutils literal notranslate"><span class="pre">arr</span></code> is an object
compliant with the NumPy API, it would simply be returned rather than coerced
into a pure NumPy array, avoiding unnecessary copies and potential loss of
performance.</p>
</section>
</section>
<section id="implementation">
<h2>Implementation<a class="headerlink" href="#implementation" title="Link to this heading">#</a></h2>
<p>The implementation idea is fairly straightforward, requiring a new function
<code class="docutils literal notranslate"><span class="pre">duckarray</span></code> to be introduced in NumPy, and a new method <code class="docutils literal notranslate"><span class="pre">__duckarray__</span></code> in
NumPy-like array classes. The new <code class="docutils literal notranslate"><span class="pre">__duckarray__</span></code> method shall return the
downstream array-like object itself, such as the <code class="docutils literal notranslate"><span class="pre">self</span></code> object, while the
<code class="docutils literal notranslate"><span class="pre">__array__</span></code> method raises <code class="docutils literal notranslate"><span class="pre">TypeError</span></code>. Alternatively, the <code class="docutils literal notranslate"><span class="pre">__array__</span></code>
method could create an actual NumPy array and return that.</p>
<p>The new NumPy <code class="docutils literal notranslate"><span class="pre">duckarray</span></code> function can be implemented as follows:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span><span class="w"> </span><span class="nf">duckarray</span><span class="p">(</span><span class="n">array_like</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">array_like</span><span class="p">,</span> <span class="s1">'__duckarray__'</span><span class="p">):</span>
<span class="k">return</span> <span class="n">array_like</span><span class="o">.</span><span class="n">__duckarray__</span><span class="p">()</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">array_like</span><span class="p">)</span>
</pre></div>
</div>
<section id="example-for-a-project-implementing-numpy-like-arrays">
<h3>Example for a project implementing NumPy-like arrays<a class="headerlink" href="#example-for-a-project-implementing-numpy-like-arrays" title="Link to this heading">#</a></h3>
<p>Now consider a library that implements a NumPy-compatible array class called
<code class="docutils literal notranslate"><span class="pre">NumPyLikeArray</span></code>, this class shall implement the methods described above, and
a complete implementation would look like the following:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">class</span><span class="w"> </span><span class="nc">NumPyLikeArray</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="nf">__duckarray__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span>
<span class="k">def</span><span class="w"> </span><span class="nf">__array__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">"NumPyLikeArray can not be converted to a NumPy "</span>
<span class="s2">"array. You may want to use np.duckarray() instead."</span><span class="p">)</span>
</pre></div>
</div>
<p>The implementation above exemplifies the simplest case, but the overall idea
is that libraries will implement a <code class="docutils literal notranslate"><span class="pre">__duckarray__</span></code> method that returns the
original object, and an <code class="docutils literal notranslate"><span class="pre">__array__</span></code> method that either creates and returns an
appropriate NumPy array, or raises a``TypeError`` to prevent unintentional use
as an object in a NumPy array (if <code class="docutils literal notranslate"><span class="pre">np.asarray</span></code> is called on an arbitrary
object that does not implement <code class="docutils literal notranslate"><span class="pre">__array__</span></code>, it will create a NumPy array
scalar).</p>
<p>In case of existing libraries that don’t already implement <code class="docutils literal notranslate"><span class="pre">__array__</span></code> but
would like to use duck array typing, it is advised that they introduce
both <code class="docutils literal notranslate"><span class="pre">__array__</span></code> and``__duckarray__`` methods.</p>
</section>
</section>
<section id="usage">
<h2>Usage<a class="headerlink" href="#usage" title="Link to this heading">#</a></h2>
<p>An example of how the <code class="docutils literal notranslate"><span class="pre">__duckarray__</span></code> protocol could be used to write a
<code class="docutils literal notranslate"><span class="pre">stack</span></code> function based on <code class="docutils literal notranslate"><span class="pre">concatenate</span></code>, and its produced outcome, can be
seen below. The example here was chosen not only to demonstrate the usage of
the <code class="docutils literal notranslate"><span class="pre">duckarray</span></code> function, but also to demonstrate its dependency on the NumPy
API, demonstrated by checks on the array’s <code class="docutils literal notranslate"><span class="pre">shape</span></code> attribute. Note that the
example is merely a simplified version of NumPy’s actual implementation of
<code class="docutils literal notranslate"><span class="pre">stack</span></code> working on the first axis, and it is assumed that Dask has implemented
the <code class="docutils literal notranslate"><span class="pre">__duckarray__</span></code> method.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span><span class="w"> </span><span class="nf">duckarray_stack</span><span class="p">(</span><span class="n">arrays</span><span class="p">):</span>
<span class="n">arrays</span> <span class="o">=</span> <span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">duckarray</span><span class="p">(</span><span class="n">arr</span><span class="p">)</span> <span class="k">for</span> <span class="n">arr</span> <span class="ow">in</span> <span class="n">arrays</span><span class="p">]</span>
<span class="n">shapes</span> <span class="o">=</span> <span class="p">{</span><span class="n">arr</span><span class="o">.</span><span class="n">shape</span> <span class="k">for</span> <span class="n">arr</span> <span class="ow">in</span> <span class="n">arrays</span><span class="p">}</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">shapes</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'all input arrays must have the same shape'</span><span class="p">)</span>
<span class="n">expanded_arrays</span> <span class="o">=</span> <span class="p">[</span><span class="n">arr</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">newaxis</span><span class="p">,</span> <span class="o">...</span><span class="p">]</span> <span class="k">for</span> <span class="n">arr</span> <span class="ow">in</span> <span class="n">arrays</span><span class="p">]</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">(</span><span class="n">expanded_arrays</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">dask_arr</span> <span class="o">=</span> <span class="n">dask</span><span class="o">.</span><span class="n">array</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span>
<span class="n">np_arr</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span>
<span class="n">np_like</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">))</span>
<span class="n">duckarray_stack</span><span class="p">((</span><span class="n">dask_arr</span><span class="p">,</span> <span class="n">dask_arr</span><span class="p">))</span> <span class="c1"># Returns dask.array</span>
<span class="n">duckarray_stack</span><span class="p">((</span><span class="n">dask_arr</span><span class="p">,</span> <span class="n">np_arr</span><span class="p">))</span> <span class="c1"># Returns dask.array</span>
<span class="n">duckarray_stack</span><span class="p">((</span><span class="n">dask_arr</span><span class="p">,</span> <span class="n">np_like</span><span class="p">))</span> <span class="c1"># Returns dask.array</span>
</pre></div>
</div>
<p>In contrast, using only <code class="docutils literal notranslate"><span class="pre">np.asarray</span></code> (at the time of writing of this NEP, this
is the usual method employed by library developers to ensure arrays are
NumPy-like) has a different outcome:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">def</span><span class="w"> </span><span class="nf">asarray_stack</span><span class="p">(</span><span class="n">arrays</span><span class="p">):</span>
<span class="n">arrays</span> <span class="o">=</span> <span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">asanyarray</span><span class="p">(</span><span class="n">arr</span><span class="p">)</span> <span class="k">for</span> <span class="n">arr</span> <span class="ow">in</span> <span class="n">arrays</span><span class="p">]</span>
<span class="c1"># The remaining implementation is the same as that of</span>
<span class="c1"># ``duckarray_stack`` above</span>
<span class="n">asarray_stack</span><span class="p">((</span><span class="n">dask_arr</span><span class="p">,</span> <span class="n">dask_arr</span><span class="p">))</span> <span class="c1"># Returns np.ndarray</span>
<span class="n">asarray_stack</span><span class="p">((</span><span class="n">dask_arr</span><span class="p">,</span> <span class="n">np_arr</span><span class="p">))</span> <span class="c1"># Returns np.ndarray</span>
<span class="n">asarray_stack</span><span class="p">((</span><span class="n">dask_arr</span><span class="p">,</span> <span class="n">np_like</span><span class="p">))</span> <span class="c1"># Returns np.ndarray</span>
</pre></div>
</div>
</section>
<section id="backward-compatibility">
<h2>Backward compatibility<a class="headerlink" href="#backward-compatibility" title="Link to this heading">#</a></h2>
<p>This proposal does not raise any backward compatibility issues within NumPy,
given that it only introduces a new function. However, downstream libraries
that opt to introduce the <code class="docutils literal notranslate"><span class="pre">__duckarray__</span></code> protocol may choose to remove the
ability of coercing arrays back to a NumPy array via <code class="docutils literal notranslate"><span class="pre">np.array</span></code> or
<code class="docutils literal notranslate"><span class="pre">np.asarray</span></code> functions, preventing unintended effects of coercion of such
arrays back to a pure NumPy array (as some libraries already do, such as CuPy
and Sparse), but still leaving libraries not implementing the protocol with the
choice of utilizing <code class="docutils literal notranslate"><span class="pre">np.duckarray</span></code> to promote <code class="docutils literal notranslate"><span class="pre">array_like</span></code> objects to pure
NumPy arrays.</p>
</section>
<section id="previous-proposals-and-discussion">
<h2>Previous proposals and discussion<a class="headerlink" href="#previous-proposals-and-discussion" title="Link to this heading">#</a></h2>
<p>The duck typing protocol proposed here was described in a high level in
<a class="reference internal" href="nep-0022-ndarray-duck-typing-overview.html#nep22"><span class="std std-ref">NEP 22</span></a>.</p>
<p>Additionally, longer discussions about the protocol and related proposals
took place in
<a class="reference external" href="https://github.com/numpy/numpy/issues/13831">numpy/numpy #13831</a></p>
</section>
<section id="copyright">
<h2>Copyright<a class="headerlink" href="#copyright" title="Link to this heading">#</a></h2>
<p>This document has been placed in the public domain.</p>
</section>
</section>
</article>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#abstract">Abstract</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#detailed-description">Detailed description</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#usage-guidance">Usage Guidance</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#implementation">Implementation</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#example-for-a-project-implementing-numpy-like-arrays">Example for a project implementing NumPy-like arrays</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#usage">Usage</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#backward-compatibility">Backward compatibility</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#previous-proposals-and-discussion">Previous proposals and discussion</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#copyright">Copyright</a></li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<p class="copyright">
© Copyright 2017-2025, NumPy Developers.
<br/>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 7.2.6.
<br/>
</p>
</div>
</div>
<div class="footer-items__end">
<div class="footer-item">
<p class="theme-version">
<!-- # L10n: Setting the PST URL as an argument as this does not need to be localized -->
Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.16.1.
</p></div>
</div>
</div>
</footer>
</body>
</html>