Skip to content

Commit 4466697

Browse files
author
ci-doc-deploy-bot
committed
[skip ci] docs build of 59f665b
1 parent b63efa0 commit 4466697

16 files changed

+474
-474
lines changed

Diff for: _sources/content/mooreslaw-tutorial.ipynb

+45-45
Large diffs are not rendered by default.

Diff for: _sources/content/pairing.ipynb

+3-3
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"cells": [
33
{
44
"cell_type": "markdown",
5-
"id": "8b7449be",
5+
"id": "68da2f2d",
66
"metadata": {},
77
"source": [
88
"# Pairing Jupyter notebooks and MyST-NB\n",
@@ -76,7 +76,7 @@
7676
{
7777
"cell_type": "code",
7878
"execution_count": 1,
79-
"id": "140f25ee",
79+
"id": "b0523853",
8080
"metadata": {},
8181
"outputs": [
8282
{
@@ -94,7 +94,7 @@
9494
},
9595
{
9696
"cell_type": "markdown",
97-
"id": "1a9e3d80",
97+
"id": "b925b771",
9898
"metadata": {},
9999
"source": [
100100
"---\n",

Diff for: _sources/content/save-load-arrays.ipynb

+27-27
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"cells": [
33
{
44
"cell_type": "markdown",
5-
"id": "0d083776",
5+
"id": "54903fb4",
66
"metadata": {},
77
"source": [
88
"# Saving and sharing your NumPy arrays\n",
@@ -37,7 +37,7 @@
3737
{
3838
"cell_type": "code",
3939
"execution_count": 1,
40-
"id": "e0ce3763",
40+
"id": "f66e7ed9",
4141
"metadata": {},
4242
"outputs": [],
4343
"source": [
@@ -46,7 +46,7 @@
4646
},
4747
{
4848
"cell_type": "markdown",
49-
"id": "f78dfbdf",
49+
"id": "dc9a702f",
5050
"metadata": {},
5151
"source": [
5252
"In this tutorial, you will use the following Python, IPython magic, and NumPy functions:\n",
@@ -64,7 +64,7 @@
6464
},
6565
{
6666
"cell_type": "markdown",
67-
"id": "951b51f6",
67+
"id": "6ed3f2a1",
6868
"metadata": {},
6969
"source": [
7070
"---\n",
@@ -81,7 +81,7 @@
8181
{
8282
"cell_type": "code",
8383
"execution_count": 2,
84-
"id": "e194d284",
84+
"id": "65265300",
8585
"metadata": {},
8686
"outputs": [
8787
{
@@ -102,7 +102,7 @@
102102
},
103103
{
104104
"cell_type": "markdown",
105-
"id": "12e10b9d",
105+
"id": "cf513df5",
106106
"metadata": {},
107107
"source": [
108108
"## Save your arrays with NumPy's [`savez`](https://numpy.org/doc/stable/reference/generated/numpy.savez.html?highlight=savez#numpy.savez)\n",
@@ -125,7 +125,7 @@
125125
{
126126
"cell_type": "code",
127127
"execution_count": 3,
128-
"id": "d66e1bfa",
128+
"id": "455a0a7c",
129129
"metadata": {},
130130
"outputs": [],
131131
"source": [
@@ -134,7 +134,7 @@
134134
},
135135
{
136136
"cell_type": "markdown",
137-
"id": "592adec0",
137+
"id": "e979e17c",
138138
"metadata": {},
139139
"source": [
140140
"## Remove the saved arrays and load them back with NumPy's [`load`](https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load)\n",
@@ -159,7 +159,7 @@
159159
{
160160
"cell_type": "code",
161161
"execution_count": 4,
162-
"id": "87ae7ee1",
162+
"id": "ddd0b442",
163163
"metadata": {},
164164
"outputs": [],
165165
"source": [
@@ -169,7 +169,7 @@
169169
{
170170
"cell_type": "code",
171171
"execution_count": 5,
172-
"id": "477a8c38",
172+
"id": "ffd90408",
173173
"metadata": {},
174174
"outputs": [
175175
{
@@ -189,7 +189,7 @@
189189
{
190190
"cell_type": "code",
191191
"execution_count": 6,
192-
"id": "4f170091",
192+
"id": "b67d8e5a",
193193
"metadata": {},
194194
"outputs": [
195195
{
@@ -209,7 +209,7 @@
209209
{
210210
"cell_type": "code",
211211
"execution_count": 7,
212-
"id": "81d548d7",
212+
"id": "f9ae8e13",
213213
"metadata": {},
214214
"outputs": [
215215
{
@@ -229,7 +229,7 @@
229229
},
230230
{
231231
"cell_type": "markdown",
232-
"id": "c5da62d3",
232+
"id": "e617a9a2",
233233
"metadata": {},
234234
"source": [
235235
"## Reassign the NpzFile arrays to `x` and `y`\n",
@@ -242,7 +242,7 @@
242242
{
243243
"cell_type": "code",
244244
"execution_count": 8,
245-
"id": "35389415",
245+
"id": "da780446",
246246
"metadata": {},
247247
"outputs": [
248248
{
@@ -263,7 +263,7 @@
263263
},
264264
{
265265
"cell_type": "markdown",
266-
"id": "e502ec45",
266+
"id": "687ae480",
267267
"metadata": {},
268268
"source": [
269269
"## Success\n",
@@ -294,7 +294,7 @@
294294
{
295295
"cell_type": "code",
296296
"execution_count": 9,
297-
"id": "86c485ad",
297+
"id": "683c8102",
298298
"metadata": {},
299299
"outputs": [
300300
{
@@ -323,7 +323,7 @@
323323
},
324324
{
325325
"cell_type": "markdown",
326-
"id": "963d2c7a",
326+
"id": "695874f8",
327327
"metadata": {},
328328
"source": [
329329
"## Save the data to csv file using [`savetxt`](https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt)\n",
@@ -338,7 +338,7 @@
338338
{
339339
"cell_type": "code",
340340
"execution_count": 10,
341-
"id": "a1cbd398",
341+
"id": "0866e256",
342342
"metadata": {},
343343
"outputs": [],
344344
"source": [
@@ -347,7 +347,7 @@
347347
},
348348
{
349349
"cell_type": "markdown",
350-
"id": "9e483b91",
350+
"id": "13db97a8",
351351
"metadata": {},
352352
"source": [
353353
"Open the file, `x_y-squared.csv`, and you'll see the following:"
@@ -356,7 +356,7 @@
356356
{
357357
"cell_type": "code",
358358
"execution_count": 11,
359-
"id": "7291d38b",
359+
"id": "0ed04f8d",
360360
"metadata": {},
361361
"outputs": [
362362
{
@@ -382,7 +382,7 @@
382382
},
383383
{
384384
"cell_type": "markdown",
385-
"id": "a578c491",
385+
"id": "382d9e36",
386386
"metadata": {},
387387
"source": [
388388
"## Our arrays as a csv file\n",
@@ -406,7 +406,7 @@
406406
{
407407
"cell_type": "code",
408408
"execution_count": 12,
409-
"id": "dfdf8f25",
409+
"id": "4e320f2e",
410410
"metadata": {},
411411
"outputs": [],
412412
"source": [
@@ -416,7 +416,7 @@
416416
{
417417
"cell_type": "code",
418418
"execution_count": 13,
419-
"id": "1f49c0d7",
419+
"id": "433b88ce",
420420
"metadata": {},
421421
"outputs": [],
422422
"source": [
@@ -426,7 +426,7 @@
426426
{
427427
"cell_type": "code",
428428
"execution_count": 14,
429-
"id": "9f6e878d",
429+
"id": "b16af0dc",
430430
"metadata": {},
431431
"outputs": [
432432
{
@@ -447,7 +447,7 @@
447447
{
448448
"cell_type": "code",
449449
"execution_count": 15,
450-
"id": "82d695db",
450+
"id": "9f5ed3f8",
451451
"metadata": {},
452452
"outputs": [
453453
{
@@ -468,7 +468,7 @@
468468
},
469469
{
470470
"cell_type": "markdown",
471-
"id": "8a3a6517",
471+
"id": "1cf82f86",
472472
"metadata": {},
473473
"source": [
474474
"## Success, but remember your types\n",
@@ -479,7 +479,7 @@
479479
},
480480
{
481481
"cell_type": "markdown",
482-
"id": "172bd130",
482+
"id": "22cb4b04",
483483
"metadata": {},
484484
"source": [
485485
"## Wrapping up\n",

0 commit comments

Comments
 (0)