-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathlib.rs
1039 lines (926 loc) · 32.9 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! A cross-platform library for running child processes and building
//! pipelines.
//!
//! `duct` wants to make shelling out in Rust as easy and flexible as it
//! is in Bash. It also takes care of [tricky
//! inconsistencies](https://github.com/oconnor663/duct.py/blob/master/spec.md#consistent-behavior-for-dir)
//! in the way different platforms shell out. And it's a cross-language
//! library; the [original
//! implementation](https://github.com/oconnor663/duct.py) is in Python,
//! with an identical API.
//!
//! - [Docs](https://docs.rs/duct)
//! - [Crate](https://crates.io/crates/duct)
//! - [Repo](https://github.com/oconnor663/duct.rs)
//!
//! # Example
//!
//! `duct` uses [`os_pipe`](https://github.com/oconnor663/os_pipe.rs)
//! internally, and the docs for that one include a [big
//! example](https://docs.rs/os_pipe#example) that uses more than a
//! dozen lines of code to read both stdout and stderr from a child
//! process. `duct` can do that in one line:
//!
//! ```rust
//! use duct::sh;
//!
//! let output = sh("echo foo && echo bar >&2").stderr_to_stdout().read().unwrap();
//!
//! assert!(output.split_whitespace().eq(vec!["foo", "bar"]));
//! ```
extern crate crossbeam;
extern crate os_pipe;
use std::collections::HashMap;
use std::ffi::{OsStr, OsString};
use std::fs::File;
use std::io;
use std::io::prelude::*;
#[cfg(unix)]
use std::os::unix::process::ExitStatusExt;
#[cfg(windows)]
use std::os::windows::process::ExitStatusExt;
use std::path::{Path, PathBuf};
use std::process::{Command, Stdio, Output, ExitStatus};
use std::thread::JoinHandle;
use std::sync::Arc;
// enums defined below
use ExpressionInner::*;
use IoExpressionInner::*;
/// Create a command given a program name and a collection of arguments.
/// See also the `cmd!` macro, which doesn't require a collection.
///
/// # Example
///
/// ```
/// use duct::cmd;
///
/// let args = vec!["foo", "bar", "baz"];
///
/// let output = cmd("echo", &args).read();
///
/// assert_eq!("foo bar baz", output.unwrap());
/// ```
pub fn cmd<T, U, V>(program: T, args: U) -> Expression
where T: ToExecutable,
U: IntoIterator<Item = V>,
V: Into<OsString>
{
let mut argv_vec = Vec::new();
argv_vec.push(program.to_executable());
argv_vec.extend(args.into_iter().map(Into::<OsString>::into));
Expression::new(Cmd(argv_vec))
}
/// Create a command with any number of of positional arguments, which
/// may be different types (anything that implements `Into<OsString>`).
/// See also the `cmd` function, which takes a collection of arguments.
///
/// # Example
///
/// ```
/// #[macro_use]
/// extern crate duct;
/// use std::path::Path;
///
/// fn main() {
/// let arg1 = "foo";
/// let arg2 = "bar".to_owned();
/// let arg3 = Path::new("baz");
///
/// let output = cmd!("echo", arg1, arg2, arg3).read();
///
/// assert_eq!("foo bar baz", output.unwrap());
/// }
/// ```
#[macro_export]
macro_rules! cmd {
( $program:expr ) => {
{
use std::ffi::OsString;
use std::iter::empty;
$crate::cmd($program, empty::<OsString>())
}
};
( $program:expr $(, $arg:expr )* ) => {
{
use std::ffi::OsString;
let mut args: Vec<OsString> = Vec::new();
$(
args.push(Into::<OsString>::into($arg));
)*
$crate::cmd($program, args)
}
};
}
/// Create a command from a string of shell code.
///
/// This invokes the operating system's shell to execute the string:
/// `/bin/sh` on Unix-like systems and `cmd.exe` on Windows. This can be
/// very convenient sometimes, especially in small scripts and examples.
/// You don't need to quote each argument, and all the operators like
/// `|` and `>` work as usual.
///
/// However, building shell commands at runtime brings up tricky
/// whitespace and escaping issues, so avoid using `sh` and `format!`
/// together. Prefer `cmd!` instead in those cases. Also note that shell
/// commands don't tend to be portable between Unix and Windows.
///
/// # Example
///
/// ```
/// use duct::sh;
///
/// let output = sh("echo foo bar baz").read();
///
/// assert_eq!("foo bar baz", output.unwrap());
/// ```
pub fn sh<T: ToExecutable>(command: T) -> Expression {
Expression::new(Sh(command.to_executable()))
}
#[derive(Clone, Debug)]
#[must_use]
pub struct Expression {
inner: Arc<ExpressionInner>,
}
impl Expression {
pub fn run(&self) -> Result<Output, Error> {
let (context, stdout_reader, stderr_reader) = IoContext::new()?;
let status = self.inner.exec(context)?;
// These unwraps propagate any panics from the other thread,
// but regular errors return normally.
let stdout_vec = stdout_reader.join().unwrap()?;
let stderr_vec = stderr_reader.join().unwrap()?;
let output = Output {
status: status,
stdout: stdout_vec,
stderr: stderr_vec,
};
if !output.status.success() {
Err(Error::Status(output))
} else {
Ok(output)
}
}
pub fn read(&self) -> Result<String, Error> {
let output = self.stdout_capture().run()?;
let output_str = std::str::from_utf8(&output.stdout)?;
Ok(trim_right_newlines(output_str).to_owned())
}
pub fn pipe(&self, right: Expression) -> Expression {
Self::new(Pipe(self.clone(), right.clone()))
}
pub fn then(&self, right: Expression) -> Expression {
Self::new(Then(self.clone(), right.clone()))
}
pub fn input<T: Into<Vec<u8>>>(&self, input: T) -> Self {
Self::new(Io(Input(input.into()), self.clone()))
}
pub fn stdin<T: Into<PathBuf>>(&self, path: T) -> Self {
Self::new(Io(Stdin(path.into()), self.clone()))
}
pub fn stdin_file(&self, file: File) -> Self {
Self::new(Io(StdinFile(file), self.clone()))
}
pub fn stdin_null(&self) -> Self {
Self::new(Io(StdinNull, self.clone()))
}
pub fn stdout<T: Into<PathBuf>>(&self, path: T) -> Self {
Self::new(Io(Stdout(path.into()), self.clone()))
}
pub fn stdout_file(&self, file: File) -> Self {
Self::new(Io(StdoutFile(file), self.clone()))
}
pub fn stdout_null(&self) -> Self {
Self::new(Io(StdoutNull, self.clone()))
}
pub fn stdout_capture(&self) -> Self {
Self::new(Io(StdoutCapture, self.clone()))
}
pub fn stdout_to_stderr(&self) -> Self {
Self::new(Io(StdoutToStderr, self.clone()))
}
pub fn stderr<T: Into<PathBuf>>(&self, path: T) -> Self {
Self::new(Io(Stderr(path.into()), self.clone()))
}
pub fn stderr_file(&self, file: File) -> Self {
Self::new(Io(StderrFile(file.into()), self.clone()))
}
pub fn stderr_null(&self) -> Self {
Self::new(Io(StderrNull, self.clone()))
}
pub fn stderr_capture(&self) -> Self {
Self::new(Io(StderrCapture, self.clone()))
}
pub fn stderr_to_stdout(&self) -> Self {
Self::new(Io(StderrToStdout, self.clone()))
}
pub fn dir<T: Into<PathBuf>>(&self, path: T) -> Self {
Self::new(Io(Dir(path.into()), self.clone()))
}
pub fn env<T, U>(&self, name: T, val: U) -> Self
where T: Into<OsString>,
U: Into<OsString>
{
Self::new(Io(Env(name.into(), val.into()), self.clone()))
}
pub fn full_env<T, U, V>(&self, name_vals: T) -> Self
where T: IntoIterator<Item = (U, V)>,
U: Into<OsString>,
V: Into<OsString>
{
let env_map = name_vals.into_iter()
.map(|(k, v)| (k.into(), v.into()))
.collect();
Self::new(Io(FullEnv(env_map), self.clone()))
}
pub fn unchecked(&self) -> Self {
Self::new(Io(Unchecked, self.clone()))
}
fn new(inner: ExpressionInner) -> Self {
Expression { inner: Arc::new(inner) }
}
}
#[derive(Debug)]
enum ExpressionInner {
Cmd(Vec<OsString>),
Sh(OsString),
Pipe(Expression, Expression),
Then(Expression, Expression),
Io(IoExpressionInner, Expression),
}
impl ExpressionInner {
fn exec(&self, context: IoContext) -> io::Result<ExitStatus> {
match *self {
Cmd(ref argv) => exec_argv(argv, context),
Sh(ref command) => exec_sh(command, context),
Pipe(ref left, ref right) => exec_pipe(left, right, context),
Then(ref left, ref right) => exec_then(left, right, context),
Io(ref io_inner, ref expr) => exec_io(io_inner, expr, context),
}
}
}
fn maybe_canonicalize_exe_path(exe_name: &OsStr, context: &IoContext) -> io::Result<OsString> {
// There's a tricky interaction between exe paths and `dir`. Exe
// paths can be relative, and so we have to ask: Is an exe path
// interpreted relative to the parent's cwd, or the child's? The
// answer is that it's platform dependent! >.< (Windows uses the
// parent's cwd, but because of the fork-chdir-exec pattern, Unix
// usually uses the child's.)
//
// We want to use the parent's cwd consistently, because that saves
// the caller from having to worry about whether `dir` will have
// side effects, and because it's easy for the caller to use
// Path::join if they want to. That means that when `dir` is in use,
// we need to detect exe names that are relative paths, and
// absolutify them. We want to do that as little as possible though,
// both because canonicalization can fail, and because we prefer to
// let the caller control the child's argv[0].
//
// We never want to absolutify a name like "emacs", because that's
// probably a program in the PATH rather than a local file. So we
// look for slashes in the name to determine what's a filepath and
// what isn't. Note that anything given as a std::path::Path will
// always have a slash by the time we get here, because we
// specialize the ToExecutable trait to prepend a ./ to them when
// they're relative. This leaves the case where Windows users might
// pass a local file like "foo.bat" as a string, which we can't
// distinguish from a global program name. However, because the
// Windows has the preferred "relative to parent's cwd" behavior
// already, this case actually works without our help. (The thing
// Windows users have to watch out for instead is local files
// shadowing global program names, which I don't think we can or
// should prevent.)
let has_separator = exe_name.to_string_lossy().chars().any(std::path::is_separator);
let is_relative = Path::new(exe_name).is_relative();
if context.dir.is_some() && has_separator && is_relative {
Path::new(exe_name).canonicalize().map(Into::into)
} else {
Ok(exe_name.to_owned())
}
}
fn exec_argv(argv: &[OsString], context: IoContext) -> io::Result<ExitStatus> {
let exe = maybe_canonicalize_exe_path(&argv[0], &context)?;
let mut command = Command::new(exe);
command.args(&argv[1..]);
// TODO: Avoid unnecessary dup'ing here.
command.stdin(context.stdin.into_stdio()?);
command.stdout(context.stdout.into_stdio()?);
command.stderr(context.stderr.into_stdio()?);
if let Some(dir) = context.dir {
command.current_dir(dir);
}
command.env_clear();
for (name, val) in context.env {
command.env(name, val);
}
command.status()
}
#[cfg(unix)]
fn shell_command_argv(command: OsString) -> [OsString; 3] {
[OsStr::new("/bin/sh").to_owned(), OsStr::new("-c").to_owned(), command]
}
#[cfg(windows)]
fn shell_command_argv(command: OsString) -> [OsString; 3] {
let comspec = std::env::var_os("COMSPEC").unwrap_or(OsStr::new("cmd.exe").to_owned());
[comspec, OsStr::new("/C").to_owned(), command]
}
fn exec_sh(command: &OsString, context: IoContext) -> io::Result<ExitStatus> {
exec_argv(&shell_command_argv(command.clone()), context)
}
fn exec_pipe(left: &Expression, right: &Expression, context: IoContext) -> io::Result<ExitStatus> {
let pipe = os_pipe::pipe()?;
let mut left_context = context.try_clone()?; // dup'ing stdin/stdout isn't strictly necessary, but no big deal
left_context.stdout = IoValue::File(pipe.writer);
let mut right_context = context;
right_context.stdin = IoValue::File(pipe.reader);
let (left_result, right_result) = crossbeam::scope(|scope| {
let left_joiner = scope.spawn(|| left.inner.exec(left_context));
let right_result = right.inner.exec(right_context);
let left_result = left_joiner.join();
(left_result, right_result)
});
let right_status = right_result?;
let left_status = left_result?;
if !right_status.success() {
Ok(right_status)
} else {
Ok(left_status)
}
}
fn exec_then(left: &Expression, right: &Expression, context: IoContext) -> io::Result<ExitStatus> {
let status = left.inner.exec(context.try_clone()?)?;
if !status.success() {
Ok(status)
} else {
right.inner.exec(context)
}
}
fn exec_io(io_inner: &IoExpressionInner,
expr: &Expression,
context: IoContext)
-> io::Result<ExitStatus> {
{
crossbeam::scope(|scope| {
let (new_context, maybe_writer_thread) = io_inner.update_context(context, scope)?;
let exec_result = expr.inner.exec(new_context);
let writer_result = join_maybe_writer_thread(maybe_writer_thread);
// Propagate any exec errors first.
let exec_status = exec_result?;
// Then propagate any writer thread errors.
writer_result?;
// Finally, implement unchecked() status suppression here.
if let &Unchecked = io_inner {
Ok(ExitStatus::from_raw(0))
} else {
Ok(exec_status)
}
})
}
}
#[derive(Debug)]
enum IoExpressionInner {
Input(Vec<u8>),
Stdin(PathBuf),
StdinFile(File),
StdinNull,
Stdout(PathBuf),
StdoutFile(File),
StdoutNull,
StdoutCapture,
StdoutToStderr,
Stderr(PathBuf),
StderrFile(File),
StderrNull,
StderrCapture,
StderrToStdout,
Dir(PathBuf),
Env(OsString, OsString),
FullEnv(HashMap<OsString, OsString>),
Unchecked,
}
impl IoExpressionInner {
fn update_context<'a>(&'a self,
mut context: IoContext,
scope: &crossbeam::Scope<'a>)
-> io::Result<(IoContext, Option<WriterThread>)> {
let mut maybe_thread = None;
match *self {
Input(ref v) => {
let (reader, thread) = pipe_with_writer_thread(v, scope)?;
context.stdin = IoValue::File(reader);
maybe_thread = Some(thread)
}
Stdin(ref p) => {
context.stdin = IoValue::File(File::open(p)?);
}
StdinFile(ref f) => {
context.stdin = IoValue::File(f.try_clone()?);
}
StdinNull => {
context.stdin = IoValue::Null;
}
Stdout(ref p) => {
context.stdout = IoValue::File(File::create(p)?);
}
StdoutFile(ref f) => {
context.stdout = IoValue::File(f.try_clone()?);
}
StdoutNull => {
context.stdout = IoValue::Null;
}
StdoutCapture => context.stdout = IoValue::File(context.stdout_capture.try_clone()?),
StdoutToStderr => {
context.stdout = context.stderr.try_clone()?;
}
Stderr(ref p) => {
context.stderr = IoValue::File(File::create(p)?);
}
StderrFile(ref f) => {
context.stderr = IoValue::File(f.try_clone()?);
}
StderrNull => {
context.stderr = IoValue::Null;
}
StderrCapture => context.stderr = IoValue::File(context.stderr_capture.try_clone()?),
StderrToStdout => {
context.stderr = context.stdout.try_clone()?;
}
Dir(ref p) => {
context.dir = Some(p.clone());
}
Env(ref name, ref val) => {
context.env.insert(name.clone(), val.clone());
}
FullEnv(ref map) => {
context.env = map.clone();
}
Unchecked => {
// No-op. Unchecked is handled in exec_io().
}
}
Ok((context, maybe_thread))
}
}
// We want to allow Path("foo") to refer to the local file "./foo" on
// Unix, and we want to *prevent* Path("echo") from referring to the
// global "echo" command on either Unix or Windows. Prepend a dot to all
// relative paths to accomplish both of those.
fn sanitize_exe_path<T: Into<PathBuf>>(path: T) -> PathBuf {
let path_buf = path.into();
// Don't try to be too clever with checking parent(). The parent of "foo" is
// Some(""). See https://github.com/rust-lang/rust/issues/36861. Also we
// don't strictly need the has_root check, because joining a leading dot is
// a no-op in that case, but explicitly checking it is clearer.
if path_buf.is_absolute() || path_buf.has_root() {
path_buf
} else {
Path::new(".").join(path_buf)
}
}
pub trait ToExecutable {
fn to_executable(self) -> OsString;
}
// TODO: Get rid of most of these impls once specialization lands.
impl<'a> ToExecutable for &'a Path {
fn to_executable(self) -> OsString {
sanitize_exe_path(self).into()
}
}
impl ToExecutable for PathBuf {
fn to_executable(self) -> OsString {
sanitize_exe_path(self).into()
}
}
impl<'a> ToExecutable for &'a PathBuf {
fn to_executable(self) -> OsString {
sanitize_exe_path(&**self).into()
}
}
impl<'a> ToExecutable for &'a str {
fn to_executable(self) -> OsString {
self.into()
}
}
impl ToExecutable for String {
fn to_executable(self) -> OsString {
self.into()
}
}
impl<'a> ToExecutable for &'a String {
fn to_executable(self) -> OsString {
self.into()
}
}
impl<'a> ToExecutable for &'a OsStr {
fn to_executable(self) -> OsString {
self.into()
}
}
impl ToExecutable for OsString {
fn to_executable(self) -> OsString {
self
}
}
impl<'a> ToExecutable for &'a OsString {
fn to_executable(self) -> OsString {
self.into()
}
}
#[derive(Debug)]
pub enum Error {
Io(io::Error),
Utf8(std::str::Utf8Error),
Status(Output),
}
impl From<io::Error> for Error {
fn from(err: io::Error) -> Error {
Error::Io(err)
}
}
impl From<std::str::Utf8Error> for Error {
fn from(err: std::str::Utf8Error) -> Error {
Error::Utf8(err)
}
}
// An IoContext represents the file descriptors child processes are talking to at execution time.
// It's initialized in run(), with dups of the stdin/stdout/stderr pipes, and then passed down to
// sub-expressions. Compound expressions will clone() it, and redirections will modify it.
#[derive(Debug)]
struct IoContext {
stdin: IoValue,
stdout: IoValue,
stderr: IoValue,
stdout_capture: File,
stderr_capture: File,
dir: Option<PathBuf>,
env: HashMap<OsString, OsString>,
}
impl IoContext {
// Returns (context, stdout_reader, stderr_reader).
fn new() -> io::Result<(IoContext, ReaderThread, ReaderThread)> {
let (stdout_capture, stdout_reader) = pipe_with_reader_thread()?;
let (stderr_capture, stderr_reader) = pipe_with_reader_thread()?;
let mut env = HashMap::new();
for (name, val) in std::env::vars_os() {
env.insert(name, val);
}
let context = IoContext {
stdin: IoValue::ParentStdin,
stdout: IoValue::ParentStdout,
stderr: IoValue::ParentStderr,
stdout_capture: stdout_capture,
stderr_capture: stderr_capture,
dir: None,
env: env,
};
Ok((context, stdout_reader, stderr_reader))
}
fn try_clone(&self) -> io::Result<IoContext> {
Ok(IoContext {
stdin: self.stdin.try_clone()?,
stdout: self.stdout.try_clone()?,
stderr: self.stderr.try_clone()?,
stdout_capture: self.stdout_capture.try_clone()?,
stderr_capture: self.stderr_capture.try_clone()?,
dir: self.dir.clone(),
env: self.env.clone(),
})
}
}
#[derive(Debug)]
enum IoValue {
ParentStdin,
ParentStdout,
ParentStderr,
Null,
File(File),
}
impl IoValue {
fn try_clone(&self) -> io::Result<IoValue> {
Ok(match self {
&IoValue::ParentStdin => IoValue::ParentStdin,
&IoValue::ParentStdout => IoValue::ParentStdout,
&IoValue::ParentStderr => IoValue::ParentStderr,
&IoValue::Null => IoValue::Null,
&IoValue::File(ref f) => IoValue::File(f.try_clone()?),
})
}
fn into_stdio(self) -> io::Result<Stdio> {
match self {
IoValue::ParentStdin => os_pipe::parent_stdin(),
IoValue::ParentStdout => os_pipe::parent_stdout(),
IoValue::ParentStderr => os_pipe::parent_stderr(),
IoValue::Null => Ok(Stdio::null()),
IoValue::File(f) => Ok(os_pipe::stdio_from_file(f)),
}
}
}
type ReaderThread = JoinHandle<io::Result<Vec<u8>>>;
fn pipe_with_reader_thread() -> io::Result<(File, ReaderThread)> {
let os_pipe::Pipe { mut reader, writer } = os_pipe::pipe()?;
let thread = std::thread::spawn(move || {
let mut output = Vec::new();
reader.read_to_end(&mut output)?;
Ok(output)
});
Ok((writer, thread))
}
type WriterThread = crossbeam::ScopedJoinHandle<io::Result<()>>;
fn pipe_with_writer_thread<'a>(input: &'a [u8],
scope: &crossbeam::Scope<'a>)
-> io::Result<(File, WriterThread)> {
let os_pipe::Pipe { reader, mut writer } = os_pipe::pipe()?;
let thread = scope.spawn(move || {
writer.write_all(&input)?;
Ok(())
});
Ok((reader, thread))
}
fn join_maybe_writer_thread(maybe_writer_thread: Option<WriterThread>) -> io::Result<()> {
if let Some(thread) = maybe_writer_thread {
// A broken pipe error happens if the process on the other end exits before
// we're done writing. We ignore those but return any other errors to the
// caller.
suppress_broken_pipe_errors(thread.join())
} else {
Ok(())
}
}
// This is split out to make it easier to get test coverage.
fn suppress_broken_pipe_errors(r: io::Result<()>) -> io::Result<()> {
if let &Err(ref io_error) = &r {
if io_error.kind() == io::ErrorKind::BrokenPipe {
return Ok(());
}
}
r
}
fn trim_right_newlines(s: &str) -> &str {
s.trim_right_matches(|c| c == '\n' || c == '\r')
}
#[cfg(test)]
mod test {
extern crate tempdir;
use self::tempdir::TempDir;
use super::*;
use std::collections::HashMap;
use std::env;
use std::env::consts::EXE_EXTENSION;
use std::ffi::{OsStr, OsString};
use std::fs::File;
use std::io;
use std::io::prelude::*;
use std::path::{Path, PathBuf};
use std::process::Command;
use std::str;
use std::sync::{Once, ONCE_INIT};
fn path_to_exe(name: &str) -> PathBuf {
// This project defines some associated binaries for testing, and we shell out to them in
// these tests. `cargo test` doesn't automatically build associated binaries, so this
// function takes care of building them explicitly.
static CARGO_BUILD_ONCE: Once = ONCE_INIT;
CARGO_BUILD_ONCE.call_once(|| {
let build_status = Command::new("cargo")
.arg("build")
.arg("--quiet")
.status()
.unwrap();
assert!(build_status.success(),
"Cargo failed to build associated binaries.");
});
Path::new("target").join("debug").join(name).with_extension(EXE_EXTENSION)
}
fn true_cmd() -> Expression {
cmd!(path_to_exe("status"), "0")
}
fn false_cmd() -> Expression {
cmd!(path_to_exe("status"), "1")
}
#[test]
fn test_cmd() {
// Windows compatible.
let output = cmd!(path_to_exe("echo"), "hi").read().unwrap();
assert_eq!("hi", output);
}
#[test]
fn test_sh() {
// Windows compatible.
let output = sh("echo hi").read().unwrap();
assert_eq!("hi", output);
}
#[test]
fn test_error() {
let result = false_cmd().run();
if let Err(Error::Status(output)) = result {
// Check that the status is non-zero.
assert!(!output.status.success());
} else {
panic!("Expected a status error.");
}
}
#[test]
fn test_unchecked() {
let unchecked_false = false_cmd().unchecked();
let output = unchecked_false.then(cmd!(path_to_exe("echo"), "waa"))
.then(unchecked_false)
.read()
.unwrap();
assert_eq!("waa", output);
}
#[test]
fn test_pipe() {
let output = sh("echo xxx").pipe(cmd!(path_to_exe("x_to_y"))).read().unwrap();
assert_eq!("yyy", output);
// Check that errors on either side are propagated.
let result = true_cmd().pipe(false_cmd()).run();
match result {
Err(Error::Status(output)) => {
assert!(output.status.code().unwrap() == 1);
}
_ => panic!("should never get here"),
}
let result = false_cmd().pipe(true_cmd()).run();
match result {
Err(Error::Status(output)) => {
assert!(output.status.code().unwrap() == 1);
}
_ => panic!("should never get here"),
}
}
#[test]
fn test_then() {
let output = true_cmd().then(sh("echo lo")).read().unwrap();
assert_eq!("lo", output);
// Check that errors on either side are propagated.
let result = true_cmd().then(false_cmd()).run();
match result {
Err(Error::Status(output)) => {
assert!(output.status.code().unwrap() == 1);
}
_ => panic!("should never get here"),
}
let result = false_cmd().then(true_cmd()).run();
match result {
Err(Error::Status(output)) => {
assert!(output.status.code().unwrap() == 1);
}
_ => panic!("should never get here"),
}
}
#[test]
fn test_input() {
let expr = cmd!(path_to_exe("x_to_y")).input("xxx");
let output = expr.read().unwrap();
assert_eq!("yyy", output);
}
#[test]
fn test_stderr() {
let mut pipe = ::os_pipe::pipe().unwrap();
sh("echo hi>&2").stderr_file(pipe.writer).run().unwrap();
let mut s = String::new();
pipe.reader.read_to_string(&mut s).unwrap();
assert_eq!(s.trim(), "hi");
}
#[test]
fn test_null() {
let expr = cmd!(path_to_exe("cat"))
.stdin_null()
.stdout_null()
.stderr_null();
let output = expr.read().unwrap();
assert_eq!("", output);
}
#[test]
fn test_path() {
let dir = TempDir::new("test_path").unwrap();
let input_file = dir.path().join("input_file");
let output_file = dir.path().join("output_file");
File::create(&input_file).unwrap().write_all(b"xxx").unwrap();
let expr = cmd!(path_to_exe("x_to_y"))
.stdin(&input_file)
.stdout(&output_file);
let output = expr.read().unwrap();
assert_eq!("", output);
let mut file_output = String::new();
File::open(&output_file).unwrap().read_to_string(&mut file_output).unwrap();
assert_eq!("yyy", file_output);
}
#[test]
fn test_swapping() {
let output = sh("echo hi")
.stdout_to_stderr()
.stderr_capture()
.run()
.unwrap();
let stderr = str::from_utf8(&output.stderr).unwrap().trim();
assert_eq!("hi", stderr);
// Windows compatible. (Requires no space before the ">".)
let output = sh("echo hi>&2").stderr_to_stdout().read().unwrap();
assert_eq!("hi", output);
}
#[test]
fn test_file() {
let dir = TempDir::new("test_file").unwrap();
let file = dir.path().join("file");
File::create(&file).unwrap().write_all(b"example").unwrap();
let expr = cmd!(path_to_exe("cat")).stdin_file(File::open(&file).unwrap());
let output = expr.read().unwrap();
assert_eq!(output, "example");
}
#[test]
fn test_ergonomics() {
let mystr = "owned string".to_owned();
let mypathbuf = Path::new("a/b/c").to_owned();
let myvec = vec![1, 2, 3];
// These are nonsense expressions. We just want to make sure they compile.
let _ = sh("true").stdin(&*mystr).input(&*myvec).stdout(&*mypathbuf);
let _ = sh("true").stdin(mystr).input(myvec).stdout(mypathbuf);
// Unfortunately, this one doesn't work with our Into<Vec<u8>> bound on input().
// TODO: Is it worth having these impls for &Vec in other cases?
// let _ = sh("true").stdin(&mystr).input(&myvec).stdout(&mypathbuf);
}
#[test]
fn test_capture_both() {
// Windows compatible, no space before ">", and we trim newlines at the end to avoid
// dealing with the different kinds.
let output = sh("echo hi")
.then(sh("echo lo>&2"))
.stdout_capture()
.stderr_capture()
.run()
.unwrap();
assert_eq!("hi", str::from_utf8(&output.stdout).unwrap().trim());
assert_eq!("lo", str::from_utf8(&output.stderr).unwrap().trim());
}
#[test]
fn test_dir() {
let pwd = cmd!(path_to_exe("pwd"));
// First assert that ordinary commands happen in the parent's dir.
let pwd_output = pwd.read().unwrap();
let pwd_path = Path::new(&pwd_output);
assert_eq!(pwd_path, env::current_dir().unwrap());
// Now create a temp dir and make sure we can set dir to it. This
// also tests the interaction of `dir` and relative exe paths.
let dir = TempDir::new("duct_test").unwrap();
let pwd_output = pwd.dir(dir.path()).read().unwrap();
let pwd_path = Path::new(&pwd_output);
// pwd_path isn't totally canonical on Windows, because it
// doesn't have a prefix. Thus we have to canonicalize both
// sides. (This also handles symlinks in TMP_DIR.)
assert_eq!(pwd_path.canonicalize().unwrap(),
dir.path().canonicalize().unwrap());
}
#[test]
fn test_env() {
let output = cmd!(path_to_exe("print_env"), "foo")
.env("foo", "bar")
.read()
.unwrap();
assert_eq!("bar", output);
}
#[test]
fn test_full_env() {
let var_name = "test_env_remove_var";
// Capture the parent env, and make sure it does *not* contain our variable.
let mut clean_env: HashMap<OsString, OsString> = env::vars_os().collect();
clean_env.remove(AsRef::<OsStr>::as_ref(var_name));
// Run a child process with that map passed to full_env(). It should be guaranteed not to
// see our variable, regardless of any outer env() calls or changes in the parent.
let clean_child = cmd!(path_to_exe("print_env"), var_name).full_env(clean_env);
// Dirty the parent env. Should be suppressed.
env::set_var(var_name, "junk1");
// And make an outer env() call. Should also be suppressed.
let dirty_child = clean_child.env(var_name, "junk2");