-
Notifications
You must be signed in to change notification settings - Fork 438
/
Copy pathtfonnx.py
658 lines (573 loc) · 28.6 KB
/
tfonnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
# SPDX-License-Identifier: Apache-2.0
"""
tf2onnx.tf2onnx - rewrite tensorflow graph to onnx graph
"""
import collections
import sys
import traceback
import numpy as np
from onnx import onnx_pb
import tf2onnx
import tf2onnx.onnx_opset # pylint: disable=unused-import
import tf2onnx.tflite_handlers # pylint: disable=unused-import
import tf2onnx.custom_opsets # pylint: disable=unused-import
from tf2onnx.graph import Graph
from tf2onnx.rewriter import * # pylint: disable=wildcard-import
from tf2onnx.tflite_rewriters import * # pylint: disable=wildcard-import
from tf2onnx.late_rewriters import rewrite_channels_last
from tf2onnx.shape_inference import infer_shape
from tf2onnx.tf_loader import is_function, resolve_functions, set_function, clear_functions
from tf2onnx.tf_utils import tensorflow_to_onnx, get_tf_version, compute_const_folding_using_tf
from tf2onnx.tflite_utils import graphs_from_tflite
from tf2onnx.tfjs_utils import graphs_from_tfjs
from . import constants, logging, schemas, utils, handler
logger = logging.getLogger(__name__)
# pylint: disable=useless-return,broad-except,logging-not-lazy,unused-argument,missing-docstring
# pylint: disable=unused-variable
def fold_constants_using_tf(g, outputs_to_values):
ops = list(g.get_nodes())
# pylint: disable=too-many-nested-blocks
keep_looking = True
while keep_looking:
keep_looking = False
for idx, op in enumerate(ops):
if op.output and op.output[0] in outputs_to_values:
logger.info("folding node using tf type=%s, name=%s" % (op.type, op.name))
val = outputs_to_values[op.output[0]]
new_node_name = utils.make_name(op.name)
new_output_name = new_node_name
old_output_name = op.output[0]
old_node_name = op.name
logger.debug("create const node [%s] replacing [%s]", new_node_name, old_node_name)
ops[idx] = g.make_const(new_node_name, val)
logger.debug("replace old output [%s] with new output [%s]", old_output_name, new_output_name)
# need to re-write the consumers input name to use the const name
consumers = g.find_output_consumers(old_output_name)
if consumers:
for consumer in consumers:
g.replace_input(consumer, old_output_name, new_output_name)
# keep looking until there is nothing we can fold.
keep_looking = True
g.reset_nodes(ops)
def rewrite_constant_fold(g, ops):
"""
We call tensorflow transform with constant folding but in some cases tensorflow does
fold all constants. Since there are a bunch of ops in onnx that use attributes where
tensorflow has dynamic inputs, we badly want constant folding to work. For cases where
tensorflow missed something, make another pass over the graph and fix want we care about.
"""
func_map = {
"Add": np.add,
"GreaterEqual": np.greater_equal,
"Cast": np.cast,
"ConcatV2": np.concatenate,
"Less": np.less,
"ListDiff": np.setdiff1d,
"Mul": np.multiply,
"Pack": np.stack,
"Range": np.arange,
"Sqrt": np.sqrt,
"Sub": np.subtract,
}
ops = list(ops)
# pylint: disable=too-many-nested-blocks
keep_looking = True
while keep_looking:
keep_looking = False
for idx, op in enumerate(ops):
func = func_map.get(op.type)
if func is None: continue
if set(op.output) & set(g.outputs): continue
try:
inputs = []
for node in op.inputs:
if not node.is_const():
break
inputs.append(node.get_tensor_value(as_list=False))
logger.debug("op name %s, %s, %s", op.name, len(op.input), len(inputs))
if inputs and len(op.input) == len(inputs):
logger.info("folding node type=%s, name=%s" % (op.type, op.name))
if op.type == "Cast":
dst = op.get_attr_int("to")
np_type = tf2onnx.utils.map_onnx_to_numpy_type(dst)
val = np.cast[np_type](*inputs)
elif op.type == "ConcatV2":
axis = inputs[-1]
values = inputs[:-1]
val = func(tuple(values), axis)
elif op.type == "ListDiff":
out_type = op.get_attr_int("out_idx")
np_type = tf2onnx.utils.map_onnx_to_numpy_type(out_type)
val = func(*inputs)
val = val.astype(np_type)
elif op.type in ["Pack"]:
# handle ops that need input array and axis
axis = op.get_attr_int("axis")
val = func(inputs, axis=axis)
elif op.type == "Range":
dtype = op.get_attr_int("Tidx")
np_type = tf2onnx.utils.map_onnx_to_numpy_type(dtype)
val = func(*inputs, dtype=np_type)
else:
val = func(*inputs)
new_node_name = utils.make_name(op.name)
new_output_name = new_node_name
old_output_name = op.output[0]
old_node_name = op.name
logger.debug("create const node [%s] replacing [%s]", new_node_name, old_node_name)
ops[idx] = g.make_const(new_node_name, val)
logger.debug("replace old output [%s] with new output [%s]", old_output_name, new_output_name)
# need to re-write the consumers input name to use the const name
consumers = g.find_output_consumers(old_output_name)
if consumers:
for consumer in consumers:
g.replace_input(consumer, old_output_name, new_output_name)
# keep looking until there is nothing we can fold.
# We keep the graph in topological order so if we folded,
# the result might help a following op.
keep_looking = True
except Exception as ex:
tb = traceback.format_exc() # pylint: disable=bare-except
logger.info("exception: %s, details: %s", ex, tb)
# ignore errors
# pylint: enable=too-many-nested-blocks
return ops
def rewrite_incomplete_type_support(g, ops, impacted_ops):
"""
for ops that have inclomplete type support, insert casts.
This is needed for some tensor ops in opset7 and for some ops in winml-rs5.
It is not helping performance but better than the model not working at all.
"""
ignored_input_index = {
"Tile": [1], # Tile's second input can only be int64
"Where": [0], # Where's first input is bool
}
new_ops = []
org_ops = list(ops)
for op in org_ops:
if op.type in impacted_ops:
cast_inserted = []
output_dtype = None
ignored_inputs = ignored_input_index.get(op.type)
# insert casts on inputs if the runtime only supports float
for i, input_node in enumerate(op.inputs):
if ignored_inputs and i in ignored_inputs:
continue
input_name = op.input[i]
dtype = g.get_dtype(input_name)
if dtype is None:
logger.warning("adding Cast for op %s (type is %s)' input: %s, dtype should not be None",
op.name, op.type, input_name)
if dtype != onnx_pb.TensorProto.FLOAT:
output_dtype = dtype
logger.debug("insert cast for node %s on input %s", op.name, input_name)
if input_node and input_node.type == "Cast" \
and len(g.find_output_consumers(input_node.output[0])) == 1:
input_node.set_attr("to", onnx_pb.TensorProto.FLOAT)
g.set_dtype(input_name, onnx_pb.TensorProto.FLOAT)
else:
cast_node = g.insert_new_node_on_input(op, "Cast", input_name,
to=onnx_pb.TensorProto.FLOAT)
g.set_dtype(cast_node.output[0], onnx_pb.TensorProto.FLOAT)
g.copy_shape(input_name, cast_node.output[0])
cast_inserted.append(cast_node)
if output_dtype:
# insert reverse cast if needed
for output_name in op.output:
name = utils.make_name(op.name)
logger.debug("insert cast back for node %s on output %s [dtype=%s]", op.name, output_name,
output_dtype)
output_cast = g.insert_new_node_on_output("Cast", output_name, name=name,
to=output_dtype)
g.set_dtype(output_cast.output[0], output_dtype)
g.copy_shape(output_name, output_cast.output[0])
cast_inserted.append(output_cast)
if cast_inserted:
new_ops.extend(cast_inserted)
new_ops.append(op)
return new_ops
def rewrite_incomplete_type_support_rs5(g, ops):
return rewrite_incomplete_type_support(g, ops, ["Unsqueeze", "Mul", "Concat", "Slice", "Transpose"])
def rewrite_incomplete_type_support_rs6(g, ops):
impacted_ops = [
"Div",
"IsNaN",
"Max",
"Min",
"ReduceSum",
"Slice",
"Split",
"Tile",
"Transpose",
"Where"
]
# TODO: logic to insert cast has bug, not all inputs of one node need cast
# for example, slice's input "starts" doesn't need it.
if g.opset == 10:
impacted_ops.remove("Slice")
return rewrite_incomplete_type_support(g, ops, impacted_ops)
def tensorflow_onnx_mapping(g, ops_mapping, initialized_tables=None, is_tflite=False, dequantize=False):
logger.verbose("Mapping TF node to ONNX node(s)")
mapped_op = collections.Counter()
unmapped_op = collections.Counter()
exceptions = []
if initialized_tables is None:
initialized_tables = {}
ops = list(g.get_nodes())
for node in ops:
logger.debug("Process node: %s\n%s", node.name, node.summary)
if node.need_skip():
logger.debug("explicitly skip node " + node.name)
continue
op = node.type
map_info = ops_mapping.get(op)
if map_info is None:
unmapped_op[op] += 1
if not is_tflite:
logger.error("Tensorflow op [%s: %s] is not supported", node.name, op)
continue
mapped_op[op] += 1
func, kwargs = map_info
if kwargs:
# if there is a tf_op/onnx_op key we'll map the old type to a new type
converted_op = kwargs.get("tf_op" if is_tflite else "onnx_op")
if converted_op:
# sometimes the handler wants to know what the old op name was
kwargs["tfl_op" if is_tflite else "tf_op"] = op
node.type = converted_op
body_graphs = node.get_body_graphs()
if body_graphs:
for attr, b_g in body_graphs.items():
logger.debug("start handling subgraph of %s's attribute %s", node.name, attr)
b_g.topological_sort(b_g.get_nodes())
# we assume only ONNX nodes have subgraph defined in pre-rewriters.
# that means, if we create node having subgraphs in this step, the
# created subgraphs' nodes won't be mapped.
m_ops, unm_ops, body_exceptions = tensorflow_onnx_mapping(b_g, ops_mapping)
mapped_op += m_ops
unmapped_op += unm_ops
# topological_sort on the body in case processing has changed the order
b_g.topological_sort(b_g.get_nodes())
exceptions.extend(body_exceptions)
logger.debug("finish handling subgraph of %s's attribute %s", node.name, attr)
try:
func(g, node, **kwargs, initialized_tables=initialized_tables, dequantize=dequantize)
if not is_tflite:
# tensorflow nodes must be converted in the next pass
node.skip_conversion = True
except Exception as ex:
try:
# If the graph is corrupt from the exception this can fail
summary = node.summary
except Exception:
summary = ""
logger.error("Failed to convert node %r (fct=%r)\n%r",
node.name, func, summary, exc_info=1)
exceptions.append(ex)
return mapped_op, unmapped_op, exceptions
def transpose_inputs(ctx, inputs_as_nchw):
"""Insert a transpose from NHWC to NCHW on model input on users request."""
ops = []
for node in ctx.get_nodes():
for idx, output_name in enumerate(node.output):
if output_name in inputs_as_nchw:
shape = ctx.get_shape(output_name)
if len(shape) != len(constants.NCHW_TO_NHWC):
logger.warning("transpose_input for %s: shape must be rank 4, ignored" % output_name)
ops.append(node)
continue
# insert transpose
op_name = utils.make_name(node.name)
transpose = ctx.insert_new_node_on_output("Transpose", output_name, name=op_name)
transpose.set_attr("perm", constants.NCHW_TO_NHWC)
ctx.copy_shape(output_name, transpose.output[0])
ctx.set_shape(output_name, np.array(shape)[constants.NHWC_TO_NCHW])
ops.append(transpose)
ops.append(node)
continue
ops.append(node)
ctx.reset_nodes(ops)
def transpose_outputs(ctx, outputs_as_nchw):
"""Insert a transpose from NHWC to NCHW on model output on users request."""
ops = []
for node in ctx.get_nodes():
for output_name in node.output:
if output_name in outputs_as_nchw:
shape = ctx.get_shape(output_name)
if len(shape) != len(constants.NHWC_TO_NCHW):
logger.warning("transpose_output for %s: shape must be rank 4, ignored" % output_name)
ops.append(node)
continue
# insert transpose
op_name = utils.make_name(node.name)
transpose = ctx.insert_new_node_on_output("Transpose", node.input[0], name=op_name)
transpose.set_attr("perm", constants.NHWC_TO_NCHW)
ctx.copy_shape(node.output[0], transpose.output[0])
ctx.set_shape(transpose.output[0], np.array(shape)[constants.NHWC_TO_NCHW])
ctx.set_shape(output_name, np.array(shape)[constants.NHWC_TO_NCHW])
ops.append(transpose)
ops.append(node)
continue
ops.append(node)
ctx.reset_nodes(ops)
def topological_sort(g, continue_on_error):
ops = g.get_nodes()
if not continue_on_error:
g.topological_sort(ops)
else:
try:
g.topological_sort(ops)
except: # pylint: disable=bare-except
# if we continue on error, ignore graph cycles so we can report all missing ops
pass
def run_rewriters(g, funcs, continue_on_error):
"""Rewrite the original graph and body graphs of nodes"""
# NOTE(wayuanho):
# 1. we don't sort graph here, rewriter is expected to do it on its own.
# 2. the graph here may have circles, current topological_sort cannot handle it.
for func in funcs:
try:
ops = func(g, g.get_nodes())
g.reset_nodes(ops)
except Exception as ex:
type_, value_, traceback_ = sys.exc_info()
logger.error("rewriter %s: exception %s", func, ex)
ex_ext = traceback.format_exception(type_, value_, traceback_)
if continue_on_error:
logger.info(ex_ext)
else:
raise ex
if utils.is_debug_mode():
broken_outputs = g.check_integrity()
if broken_outputs:
logging.error(
"After rewriter %s, graph breaks at outputs %s",
func.__name__, broken_outputs
)
if g.contained_graphs:
for dict_val in g.contained_graphs.values():
for attr_name, b_g in dict_val.items():
run_rewriters(b_g, funcs, attr_name)
def process_tf_graph(tf_graph, continue_on_error=False, verbose=False, target=None,
opset=None, custom_op_handlers=None, custom_rewriter=None,
extra_opset=None, shape_override=None, inputs_as_nchw=None, outputs_as_nchw=None,
input_names=None, output_names=None, ignore_default=None, use_default=None,
is_subgraph=False, const_node_values=None, tensors_to_rename=None,
initialized_tables=None, tflite_path=None, dequantize=False, tfjs_path=None):
"""Convert tensorflow graph to onnx graph.
Args:
tf_graph: tensorflow graph
continue_on_error: if an op can't be processed (aka there is no mapping), continue
verbose: print summary stats (deprecated)
target: list of workarounds applied to help certain platforms
opset: the opset to be used (int, default is latest)
custom_op_handlers: dictionary of custom ops handlers
custom_rewriter: list of custom graph rewriters
extra_opset: list of extra opset's, for example the opset's used by custom ops
shape_override: dict with inputs that override the shapes given by tensorflow
inputs_as_nchw: transpose inputs in list from nhwc to nchw
outputs_as_nchw: transpose outputs in list from nhwc to nchw
input_names: list of input node names in graph, input name format as node_name:port_id. Optional.
output_names: list of output node names in graph, format is node_name:port_id. Optional for tflite.
ignore_default: list of node names of PlaceholderWithDefault ops to change into Placeholder ops
use_default: list of node names of PlaceholderWithDefault ops to change into Identity ops using the default
const_node_values: a dict returned by compress_graph_def mapping node names to tensor values
tensors_to_rename: an optional dict (string->string) mapping tensor names to new names
initialized_tables: mapping from table shared_names to tuple of keys and values of table
tflite_path: Path to a tflite file to convert. If used, pass None to tf_graph
Return:
onnx graph
"""
# NOTE: process_parsed_graph and Graph are always given tensors post-rename.
# process_tf_graph (this function) gets tensors pre-rename.
if verbose:
logger.warning("Argument verbose for process_tf_graph is deprecated. Please use --verbose option instead.")
del verbose
opset = utils.find_opset(opset)
logger.info("Using tensorflow=%s, onnx=%s, tf2onnx=%s/%s",
get_tf_version(), utils.get_onnx_version(), tf2onnx.__version__, tf2onnx.version.git_version[:6])
logger.info("Using opset <onnx, %s>", opset)
if opset > schemas.get_max_supported_opset_version():
logger.warning("Currently installed onnx package %s is too low to support opset %s, "
"please upgrade onnx package to avoid potential conversion issue.",
utils.get_onnx_version(), opset)
clear_functions()
if inputs_as_nchw is None:
inputs_as_nchw = []
if outputs_as_nchw is None:
outputs_as_nchw = []
is_tflite = False
if tflite_path is not None:
main_g, subgraphs = graphs_from_tflite(tflite_path, input_names, output_names)
is_tflite = True
elif tfjs_path is not None:
main_g, subgraphs = graphs_from_tfjs(tfjs_path, input_names, output_names, shape_override,
ignore_default, use_default)
else:
main_g, subgraphs = graphs_from_tf(tf_graph, input_names, output_names, shape_override, const_node_values,
ignore_default, use_default)
for g in [main_g] + subgraphs:
g.set_config(target, opset, extra_opset)
g = process_graphs(main_g, subgraphs, custom_op_handlers, inputs_as_nchw, outputs_as_nchw, continue_on_error,
custom_rewriter, initialized_tables, tensors_to_rename, is_tflite, dequantize)
return g
def graphs_from_tf(tf_graph, input_names, output_names, shape_override=None, const_node_values=None,
ignore_default=None, use_default=None):
"""make tf2onnx internal subgraphs from the tensorflow subgraphs"""
if shape_override is None:
shape_override = {}
ordered_func = resolve_functions(tf_graph)
subgraphs = []
for func in ordered_func:
f_inputs_names = [t.name for t in func.inputs]
f_output_names = [t.name for t in func.outputs]
outputs_to_values, _ = compute_const_folding_using_tf(func, const_node_values, output_names)
onnx_nodes, _, _, output_shapes, dtypes, _ = \
tensorflow_to_onnx(func, shape_override, const_node_values, ignore_default, use_default)
fg = Graph(onnx_nodes, output_shapes, dtypes, input_names=f_inputs_names, output_names=f_output_names,
is_subgraph=True, graph_name=func.name)
fold_constants_using_tf(fg, outputs_to_values)
subgraphs.append(fg)
is_func = is_function(tf_graph)
if not is_func:
tf_graph = infer_shape(tf_graph, shape_override)
outputs_to_values, _ = compute_const_folding_using_tf(tf_graph, const_node_values, output_names)
onnx_nodes, _, _, output_shapes, dtypes, _ = \
tensorflow_to_onnx(tf_graph, shape_override, const_node_values, ignore_default, use_default)
utils.check_io(input_names, output_names, output_shapes.keys())
main_g = Graph(onnx_nodes, output_shapes, dtypes, input_names=input_names, output_names=output_names)
fold_constants_using_tf(main_g, outputs_to_values)
return main_g, subgraphs
def process_graphs(main_g, subgraphs, custom_op_handlers, inputs_as_nchw, outputs_as_nchw, continue_on_error,
custom_rewriter, initialized_tables, tensors_to_rename, is_tflite=False, dequantize=False):
if tensors_to_rename is not None:
main_g.rename_tensors(tensors_to_rename)
inputs_as_nchw = [tensors_to_rename.get(t, t) for t in inputs_as_nchw]
outputs_as_nchw = [tensors_to_rename.get(t, t) for t in outputs_as_nchw]
for g in subgraphs:
fg = process_parsed_graph(g, custom_op_handlers, inputs_as_nchw, outputs_as_nchw, continue_on_error,
custom_rewriter, initialized_tables, is_tflite, dequantize)
set_function(fg.graph_name, fg)
g = process_parsed_graph(main_g, custom_op_handlers, inputs_as_nchw, outputs_as_nchw, continue_on_error,
custom_rewriter, initialized_tables, is_tflite, dequantize)
return g
def process_parsed_graph(g, custom_op_handlers, inputs_as_nchw, outputs_as_nchw, continue_on_error, custom_rewriter,
initialized_tables, is_tflite=False, dequantize=False):
op_cnt, attr_cnt = g.dump_node_statistics(include_attrs=True, include_subgraphs=False)
if is_tflite:
tfl_rewriters = []
if dequantize:
tfl_rewriters.append(rewrite_tfl_qdq)
tfl_rewriters.append(rewrite_tfl_scan_outputs)
tfl_rewriters.append(rewrite_tfl_select_zero)
tfl_rewriters.append(rewrite_tfl_rfft)
run_rewriters(g, tfl_rewriters, continue_on_error)
tfl_ops_mapping = handler.tfl_op.create_tfl_to_tf_mapping()
_, _, exceptions = tensorflow_onnx_mapping(g, tfl_ops_mapping, is_tflite=True, dequantize=False)
if exceptions and not continue_on_error:
raise exceptions[0]
# create ops mapping for the desired opsets
ops_mapping = handler.tf_op.create_mapping(g.opset, g.extra_opset)
# apply custom ops on top of the assembled opset. We can either complement the opset
# or override existing ops with a custom op.
if custom_op_handlers is not None:
# below is a bit tricky since there are a few api's:
# 1. the future way we want custom ops to be registered with the @tf_op decorator. Those handlers will be
# registered via the decorator on load of the module ... nothing is required here.
# 2. the old custom op api: a dictionary of {name: (func, args[])
# We deal with this by using a compat_handler that wraps to old handler with a new style handler.
# This is tempoary to give people give to move to the new api and after tf2onnx-1.5 we want to remove this
custom_opset = {}
for k, v in custom_op_handlers.items():
# FIXME: remove this after tf2onnx-1.5
def compat_handler(ctx, node, **kwargs):
# wrap old handler
name = node.name
args = kwargs["args"]
func = kwargs["func"]
return func(ctx, node, name, args)
args = v[1]
kwargs = {"func": v[0]}
if args:
onnx_op = args[0]
kwargs["onnx_op"] = onnx_op
args = args[1:]
kwargs["args"] = args
new_handler = handler.tf_op(k,
domain=constants.TENSORFLOW_OPSET.domain,
kwargs=kwargs)
new_handler.register_compat_handler(compat_handler, 1)
custom_opset[k] = (compat_handler, kwargs)
ops_mapping.update(custom_opset)
if inputs_as_nchw:
transpose_inputs(g, inputs_as_nchw)
if outputs_as_nchw:
transpose_outputs(g, outputs_as_nchw)
# pre-processing graph rewrites
# bi-directional re-writer should be placed after single directional re-writer
rewriters = [
# single directional
rewrite_constant_fold,
rewrite_quantize_and_dequantize,
rewrite_fused_ops,
rewrite_transpose,
rewrite_flatten,
rewrite_random_uniform,
rewrite_random_uniform_fold_const,
rewrite_random_normal,
rewrite_dropout,
rewrite_conv_dilations,
rewrite_eye,
rewrite_leakyrelu,
rewrite_thresholded_relu,
rewrite_conv2d_with_pad,
rewriter_lstm_tf2,
rewrite_gru_tf2,
rewrite_single_direction_lstm,
# bi-directional
rewrite_bi_direction_lstm,
rewrite_single_direction_gru,
rewrite_bi_direction_gru,
rewrite_custom_rnn_cell,
rewrite_generic_loop, rewrite_cond,
rewrite_biasadd_with_conv2d,
rewrite_layer_normalization,
rewrite_gemm,
rewrite_ragged_variant_shape,
]
if custom_rewriter is not None:
rewriters.extend(custom_rewriter)
run_rewriters(g, rewriters, continue_on_error)
# some nodes may already copied into inner Graph, so remove them from main Graph.
g.delete_unused_nodes(g.outputs)
topological_sort(g, continue_on_error)
mapped_op, unmapped_op, exceptions = \
tensorflow_onnx_mapping(g, ops_mapping, initialized_tables, dequantize=dequantize)
if unmapped_op:
logger.error("Unsupported ops: %s", unmapped_op)
if exceptions and not continue_on_error:
raise exceptions[0]
# post-processing rewriters
late_rewriters = []
if g.is_target(constants.TARGET_RS5):
late_rewriters.append(rewrite_incomplete_type_support_rs5)
if g.is_target(constants.TARGET_RS6):
late_rewriters.append(rewrite_incomplete_type_support_rs6)
if g.is_target(constants.TARGET_CHANNELS_LAST):
late_rewriters.append(rewrite_channels_last)
if late_rewriters:
run_rewriters(g, late_rewriters, continue_on_error)
# onnx requires topological sorting
topological_sort(g, continue_on_error)
g.update_proto()
logger.verbose(
"Summay Stats:\n"
"\ttensorflow ops: {}\n"
"\ttensorflow attr: {}\n"
"\tonnx mapped: {}\n"
"\tonnx unmapped: {}".format(op_cnt, attr_cnt, mapped_op, unmapped_op))
return g
def tf_optimize(input_names, output_names, graph_def):
"""optimize tensorflow graph. This is in tf_loader but some apps call this
so we proxy into tf_loader to keep them working."""
return tf2onnx.tf_loader.tf_optimize(input_names, output_names, graph_def)