diff --git a/instrumentation/opentelemetry-instrumentation-sklearn/CHANGELOG.md b/instrumentation/opentelemetry-instrumentation-sklearn/CHANGELOG.md
new file mode 100644
index 0000000000..5b9a46c48f
--- /dev/null
+++ b/instrumentation/opentelemetry-instrumentation-sklearn/CHANGELOG.md
@@ -0,0 +1,5 @@
+# Changelog
+
+## Unreleased
+
+- Initial release ([#151](https://github.com/open-telemetry/opentelemetry-python-contrib/pull/151))
diff --git a/instrumentation/opentelemetry-instrumentation-sklearn/LICENSE b/instrumentation/opentelemetry-instrumentation-sklearn/LICENSE
new file mode 100644
index 0000000000..261eeb9e9f
--- /dev/null
+++ b/instrumentation/opentelemetry-instrumentation-sklearn/LICENSE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/instrumentation/opentelemetry-instrumentation-sklearn/MANIFEST.in b/instrumentation/opentelemetry-instrumentation-sklearn/MANIFEST.in
new file mode 100644
index 0000000000..aed3e33273
--- /dev/null
+++ b/instrumentation/opentelemetry-instrumentation-sklearn/MANIFEST.in
@@ -0,0 +1,9 @@
+graft src
+graft tests
+global-exclude *.pyc
+global-exclude *.pyo
+global-exclude __pycache__/*
+include CHANGELOG.md
+include MANIFEST.in
+include README.rst
+include LICENSE
diff --git a/instrumentation/opentelemetry-instrumentation-sklearn/README.rst b/instrumentation/opentelemetry-instrumentation-sklearn/README.rst
new file mode 100644
index 0000000000..20679b1011
--- /dev/null
+++ b/instrumentation/opentelemetry-instrumentation-sklearn/README.rst
@@ -0,0 +1,23 @@
+OpenTelemetry Scikit-Learn Instrumentation
+==========================================
+
+|pypi|
+
+.. |pypi| image:: https://badge.fury.io/py/opentelemetry-instrumentation-sklearn.svg
+ :target: https://pypi.org/project/opentelemetry-instrumentation-sklearn/
+
+This library allows tracing HTTP requests made by the
+`scikit-learn `_ library.
+
+Installation
+------------
+
+::
+
+ pip install opentelemetry-instrumentation-sklearn
+
+References
+----------
+
+* `OpenTelemetry sklearn Instrumentation `_
+* `OpenTelemetry Project `_
diff --git a/instrumentation/opentelemetry-instrumentation-sklearn/setup.cfg b/instrumentation/opentelemetry-instrumentation-sklearn/setup.cfg
new file mode 100644
index 0000000000..dd15bda352
--- /dev/null
+++ b/instrumentation/opentelemetry-instrumentation-sklearn/setup.cfg
@@ -0,0 +1,55 @@
+# Copyright The OpenTelemetry Authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+[metadata]
+name = opentelemetry-instrumentation-sklearn
+description = OpenTelemetry sklearn instrumentation
+long_description = file: README.rst
+long_description_content_type = text/x-rst
+author = OpenTelemetry Authors
+author_email = cncf-opentelemetry-contributors@lists.cncf.io
+url = https://github.com/open-telemetry/opentelemetry-python-contrib/tree/master/instrumentation/opentelemetry-instrumentation-sklearn
+platforms = any
+license = Apache-2.0
+classifiers =
+ Development Status :: 4 - Beta
+ Intended Audience :: Developers
+ License :: OSI Approved :: Apache Software License
+ Programming Language :: Python
+ Programming Language :: Python :: 3
+ Programming Language :: Python :: 3.5
+ Programming Language :: Python :: 3.6
+ Programming Language :: Python :: 3.7
+ Programming Language :: Python :: 3.8
+
+[options]
+python_requires = >=3.5
+package_dir=
+ =src
+packages=find_namespace:
+install_requires =
+ opentelemetry-api == 0.16.dev0
+ opentelemetry-instrumentation == 0.16.dev0
+ scikit-learn ~= 0.22.0
+
+[options.extras_require]
+test =
+ opentelemetry-test == 0.16.dev0
+
+[options.packages.find]
+where = src
+
+[options.entry_points]
+opentelemetry_instrumentor =
+ sklearn = opentelemetry.instrumentation.sklearn:SklearnInstrumentor
diff --git a/instrumentation/opentelemetry-instrumentation-sklearn/setup.py b/instrumentation/opentelemetry-instrumentation-sklearn/setup.py
new file mode 100644
index 0000000000..92f53925e0
--- /dev/null
+++ b/instrumentation/opentelemetry-instrumentation-sklearn/setup.py
@@ -0,0 +1,31 @@
+# Copyright The OpenTelemetry Authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import os
+
+import setuptools
+
+BASE_DIR = os.path.dirname(__file__)
+VERSION_FILENAME = os.path.join(
+ BASE_DIR,
+ "src",
+ "opentelemetry",
+ "instrumentation",
+ "sklearn",
+ "version.py",
+)
+PACKAGE_INFO = {}
+with open(VERSION_FILENAME) as f:
+ exec(f.read(), PACKAGE_INFO)
+
+setuptools.setup(version=PACKAGE_INFO["__version__"])
diff --git a/instrumentation/opentelemetry-instrumentation-sklearn/src/opentelemetry/instrumentation/sklearn/__init__.py b/instrumentation/opentelemetry-instrumentation-sklearn/src/opentelemetry/instrumentation/sklearn/__init__.py
new file mode 100644
index 0000000000..90d57f05a6
--- /dev/null
+++ b/instrumentation/opentelemetry-instrumentation-sklearn/src/opentelemetry/instrumentation/sklearn/__init__.py
@@ -0,0 +1,759 @@
+# Copyright 2020, OpenTelemetry Authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+The integration with sklearn supports the scikit-learn compatible libraries,
+it can be enabled by using ``SklearnInstrumentor``.
+
+.. sklearn: https://github.com/scikit-learn/scikit-learn
+
+Usage
+-----
+
+Package instrumentation example:
+
+.. code-block:: python
+
+ from opentelemetry.instrumentation.sklearn import SklearnInstrumentor
+
+ # instrument the sklearn library
+ SklearnInstrumentor().instrument()
+
+ # instrument sklearn and other libraries
+ SklearnInstrumentor(
+ packages=["sklearn", "lightgbm", "xgboost"]
+ ).instrument()
+
+
+Model intrumentation example:
+
+.. code-block:: python
+
+ from opentelemetry.instrumentation.sklearn import SklearnInstrumentor
+ from sklearn.datasets import load_iris
+ from sklearn.ensemble import RandomForestClassifier
+ from sklearn.model_selection import train_test_split
+ from sklearn.pipeline import Pipeline
+
+ X, y = load_iris(return_X_y=True)
+ X_train, X_test, y_train, y_test = train_test_split(X, y)
+
+ model = Pipeline(
+ [
+ ("class", RandomForestClassifier(n_estimators=10)),
+ ]
+ )
+
+ model.fit(X_train, y_train)
+
+ SklearnInstrumentor().instrument_estimator(model)
+
+"""
+import logging
+import os
+from functools import wraps
+from importlib import import_module
+from inspect import isclass
+from pkgutil import iter_modules
+from typing import Callable, Dict, List, MutableMapping, Sequence, Type, Union
+
+from sklearn.base import BaseEstimator
+from sklearn.pipeline import FeatureUnion, Pipeline
+from sklearn.tree import BaseDecisionTree
+from sklearn.utils.metaestimators import _IffHasAttrDescriptor
+
+from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
+from opentelemetry.instrumentation.sklearn.version import __version__
+from opentelemetry.trace import get_tracer
+from opentelemetry.util.types import Attributes
+
+logger = logging.getLogger(__name__)
+
+
+def implement_span_estimator(
+ func: Callable,
+ estimator: Union[BaseEstimator, Type[BaseEstimator]],
+ attributes: Attributes = None,
+):
+ """Wrap the method call with a span.
+
+ Args:
+ func: A callable to be wrapped in a span
+ estimator: An instance or class of an estimator
+ attributes: Attributes to apply to the span
+
+ Returns:
+ The passed function wrapped in a span.
+ """
+ if isclass(estimator):
+ name = estimator.__name__
+ else:
+ name = estimator.__class__.__name__
+ logger.debug("Instrumenting: %s.%s", name, func.__name__)
+ attributes = attributes or {}
+ name = "{cls}.{func}".format(cls=name, func=func.__name__)
+ return implement_span_function(func, name, attributes)
+
+
+def implement_span_function(func: Callable, name: str, attributes: Attributes):
+ """Wrap the function with a span.
+
+ Args:
+ func: A callable to be wrapped in a span
+ name: The name of the span
+ attributes: Attributes to apply to the span
+
+ Returns:
+ The passed function wrapped in a span.
+ """
+
+ @wraps(func)
+ def wrapper(*args, **kwargs):
+ with get_tracer(__name__, __version__).start_as_current_span(
+ name=name
+ ) as span:
+ if span.is_recording():
+ for key, val in attributes.items():
+ span.set_attribute(key, val)
+ return func(*args, **kwargs)
+
+ return wrapper
+
+
+def implement_span_delegator(
+ obj: _IffHasAttrDescriptor, attributes: Attributes = None
+):
+ """Wrap the descriptor's fn with a span.
+
+ Args:
+ obj: An instance of _IffHasAttrDescriptor
+ attributes: Attributes to apply to the span
+ """
+ # Don't instrument inherited delegators
+ if hasattr(obj, "_otel_original_fn"):
+ logger.debug("Already instrumented: %s", obj.fn.__qualname__)
+ return
+ logger.debug("Instrumenting: %s", obj.fn.__qualname__)
+ attributes = attributes or {}
+ setattr(obj, "_otel_original_fn", getattr(obj, "fn"))
+ setattr(
+ obj,
+ "fn",
+ implement_span_function(obj.fn, obj.fn.__qualname__, attributes),
+ )
+
+
+def get_delegator(
+ estimator: Type[BaseEstimator], method_name: str
+) -> Union[_IffHasAttrDescriptor, None]:
+ """Get the delegator from a class method or None.
+
+ Args:
+ estimator: A class derived from ``sklearn``'s ``BaseEstimator``.
+ method_name (str): The method name of the estimator on which to
+ check for delegation.
+
+ Returns:
+ The delegator, if one exists, otherwise None.
+ """
+ class_attr = getattr(estimator, method_name)
+ if getattr(class_attr, "__closure__", None) is not None:
+ for cell in class_attr.__closure__:
+ if isinstance(cell.cell_contents, _IffHasAttrDescriptor):
+ return cell.cell_contents
+ return None
+
+
+def get_base_estimators(packages: List[str]) -> Dict[str, Type[BaseEstimator]]:
+ """Walk package hierarchies to get BaseEstimator-derived classes.
+
+ Args:
+ packages (list(str)): A list of package names to instrument.
+
+ Returns:
+ A dictionary of qualnames and classes inheriting from
+ ``BaseEstimator``.
+ """
+ klasses = dict()
+ for package_name in packages:
+ lib = import_module(package_name)
+ package_dir = os.path.dirname(lib.__file__)
+ for (_, module_name, _) in iter_modules([package_dir]):
+ # import the module and iterate through its attributes
+ try:
+ module = import_module(package_name + "." + module_name)
+ except ImportError:
+ logger.warning(
+ "Unable to import %s.%s", package_name, module_name
+ )
+ continue
+ for attribute_name in dir(module):
+ attrib = getattr(module, attribute_name)
+ if isclass(attrib) and issubclass(attrib, BaseEstimator):
+ klasses[
+ ".".join([package_name, module_name, attribute_name])
+ ] = attrib
+ return klasses
+
+
+# Methods on which spans should be applied.
+DEFAULT_METHODS = [
+ "fit",
+ "transform",
+ "predict",
+ "predict_proba",
+ "_fit",
+ "_transform",
+ "_predict",
+ "_predict_proba",
+]
+
+# Classes and their attributes which contain a list of tupled estimators
+# through which we should walk recursively for estimators.
+DEFAULT_NAMEDTUPLE_ATTRIBS = {
+ Pipeline: ["steps"],
+ FeatureUnion: ["transformer_list"],
+}
+
+# Classes and their attributes which contain an estimator or sequence of
+# estimators through which we should walk recursively for estimators.
+DEFAULT_ATTRIBS = {}
+
+# Classes (including children) explicitly excluded from autoinstrumentation
+DEFAULT_EXCLUDE_CLASSES = [BaseDecisionTree]
+
+# Default packages for autoinstrumentation
+DEFAULT_PACKAGES = ["sklearn"]
+
+
+class SklearnInstrumentor(BaseInstrumentor):
+ """Instrument a fitted sklearn model with opentelemetry spans.
+
+ Instrument methods of ``BaseEstimator``-derived components in a sklearn
+ model. The assumption is that a machine learning model ``Pipeline`` (or
+ class descendent) is being instrumented with opentelemetry. Within a
+ ``Pipeline`` is some hierarchy of estimators and transformers.
+
+ The ``instrument_estimator`` method walks this hierarchy of estimators,
+ implementing each of the defined methods with its own span.
+
+ Certain estimators in the sklearn ecosystem contain other estimators as
+ instance attributes. Support for walking this embedded sub-hierarchy is
+ supported with ``recurse_attribs``. This argument is a dictionary
+ with classes as keys, and a list of attributes representing embedded
+ estimators as values. By default, ``recurse_attribs`` is empty.
+
+ Similar to Pipelines, there are also estimators which have class attributes
+ as a list of 2-tuples; for instance, the ``FeatureUnion`` and its attribute
+ ``transformer_list``. Instrumenting estimators like this is also
+ supported through the ``recurse_namedtuple_attribs`` argument. This
+ argument is a dictionary with classes as keys, and a list of attribute
+ names representing the namedtuple list(s). By default, the
+ ``recurse_namedtuple_attribs`` dictionary supports
+ ``Pipeline`` with ``steps``, and ``FeatureUnion`` with
+ ``transformer_list``.
+
+ Note that spans will not be generated for any child transformer whose
+ parent transformer has ``n_jobs`` parameter set to anything besides
+ ``None`` or ``1``.
+
+ Package instrumentation example:
+
+ .. code-block:: python
+
+ from opentelemetry.instrumentation.sklearn import SklearnInstrumentor
+
+ # instrument the sklearn library
+ SklearnInstrumentor().instrument()
+
+ # instrument several sklearn-compatible libraries
+ packages = ["sklearn", "lightgbm", "xgboost"]
+ SklearnInstrumentor(packages=packages).instrument()
+
+
+ Model intrumentation example:
+
+ .. code-block:: python
+
+ from opentelemetry.instrumentation.sklearn import SklearnInstrumentor
+ from sklearn.datasets import load_iris
+ from sklearn.ensemble import RandomForestClassifier
+ from sklearn.model_selection import train_test_split
+ from sklearn.pipeline import Pipeline
+
+ X, y = load_iris(return_X_y=True)
+ X_train, X_test, y_train, y_test = train_test_split(X, y)
+
+ model = Pipeline(
+ [
+ ("class", RandomForestClassifier(n_estimators=10)),
+ ]
+ )
+
+ model.fit(X_train, y_train)
+
+ SklearnInstrumentor().instrument_estimator(model)
+
+ Args:
+ methods (list): A list of method names on which to instrument a span.
+ This list of methods will be checked on all estimators in the model
+ hierarchy. Used in package and model instrumentation
+ recurse_attribs (dict): A dictionary of ``BaseEstimator``-derived
+ sklearn classes as keys, with values being a list of attributes. Each
+ attribute represents either an estimator or list of estimators on
+ which to also implement spans. An example is
+ ``RandomForestClassifier`` and its attribute ``estimators_``. Used
+ in model instrumentation only.
+ recurse_namedtuple_attribs (dict): A dictionary of ``BaseEstimator``-
+ derived sklearn types as keys, with values being a list of
+ attribute names. Each attribute represents a list of 2-tuples in
+ which the first element is the estimator name, and the second
+ element is the estimator. Defaults include sklearn's ``Pipeline``
+ and its attribute ``steps``, and the ``FeatureUnion`` and its
+ attribute ``transformer_list``. Used in model instrumentation only.
+ packages: A list of sklearn-compatible packages to
+ instrument. Used with package instrumentation only.
+ exclude_classes: A list of classes to exclude from instrumentation.
+ Child classes are also excluded. Default is sklearn's
+ ``[BaseDecisionTree]``.
+ """
+
+ def __new__(cls, *args, **kwargs):
+ """Override new.
+
+ The base class' new method passes args and kwargs. We override because
+ we init the class with configuration and Python raises TypeError when
+ additional arguments are passed to the object.__new__() method.
+ """
+ if cls._instance is None:
+ cls._instance = object.__new__(cls)
+
+ return cls._instance
+
+ def __init__(
+ self,
+ methods: List[str] = None,
+ recurse_attribs: Dict[Type[BaseEstimator], List[str]] = None,
+ recurse_namedtuple_attribs: Dict[
+ Type[BaseEstimator], List[str]
+ ] = None,
+ packages: List[str] = None,
+ exclude_classes: List[Type] = None,
+ ):
+ self.methods = methods or DEFAULT_METHODS
+ self.recurse_attribs = recurse_attribs or DEFAULT_ATTRIBS
+ self.recurse_namedtuple_attribs = (
+ recurse_namedtuple_attribs or DEFAULT_NAMEDTUPLE_ATTRIBS
+ )
+ self.packages = packages or DEFAULT_PACKAGES
+ if exclude_classes is None:
+ self.exclude_classes = tuple(DEFAULT_EXCLUDE_CLASSES)
+ else:
+ self.exclude_classes = tuple(exclude_classes)
+
+ def _instrument(self, **kwargs):
+ """Instrument the library, and any additional specified on init."""
+ klasses = get_base_estimators(packages=self.packages)
+ attributes = kwargs.get("attributes")
+ for _, klass in klasses.items():
+ if issubclass(klass, self.exclude_classes):
+ logger.debug("Not instrumenting (excluded): %s", str(klass))
+ else:
+ logger.debug("Instrumenting: %s", str(klass))
+ for method_name in self.methods:
+ if hasattr(klass, method_name):
+ self._instrument_class_method(
+ estimator=klass,
+ method_name=method_name,
+ attributes=attributes,
+ )
+
+ def _uninstrument(self, **kwargs):
+ """Uninstrument the library"""
+ klasses = get_base_estimators(packages=self.packages)
+ for _, klass in klasses.items():
+ logger.debug("Uninstrumenting: %s", str(klass))
+ for method_name in self.methods:
+ if hasattr(klass, method_name):
+ self._uninstrument_class_method(
+ estimator=klass, method_name=method_name
+ )
+
+ def instrument_estimator(
+ self, estimator: BaseEstimator, attributes: Attributes = None
+ ):
+ """Instrument a fitted estimator and its hierarchy where configured.
+
+ Args:
+ estimator (sklearn.base.BaseEstimator): A fitted ``sklearn``
+ estimator, typically a ``Pipeline`` instance.
+ attributes (dict): Attributes to attach to the spans.
+ """
+ if isinstance(estimator, self.exclude_classes):
+ logger.debug(
+ "Not instrumenting (excluded): %s",
+ estimator.__class__.__name__,
+ )
+ return
+
+ if isinstance(
+ estimator, tuple(self.recurse_namedtuple_attribs.keys())
+ ):
+ self._instrument_estimator_namedtuple(
+ estimator=estimator, attributes=attributes
+ )
+
+ if isinstance(estimator, tuple(self.recurse_attribs.keys())):
+ self._instrument_estimator_attribute(
+ estimator=estimator, attributes=attributes
+ )
+
+ for method_name in self.methods:
+ if hasattr(estimator, method_name):
+ self._instrument_instance_method(
+ estimator=estimator,
+ method_name=method_name,
+ attributes=attributes,
+ )
+
+ def uninstrument_estimator(self, estimator: BaseEstimator):
+ """Uninstrument a fitted estimator and its hierarchy where configured.
+
+ Args:
+ estimator (sklearn.base.BaseEstimator): A fitted ``sklearn``
+ estimator, typically a ``Pipeline`` instance.
+ """
+ if isinstance(estimator, self.exclude_classes):
+ logger.debug(
+ "Not uninstrumenting (excluded): %s",
+ estimator.__class__.__name__,
+ )
+ return
+
+ if isinstance(
+ estimator, tuple(self.recurse_namedtuple_attribs.keys())
+ ):
+ self._uninstrument_estimator_namedtuple(estimator=estimator)
+
+ if isinstance(estimator, tuple(self.recurse_attribs.keys())):
+ self._uninstrument_estimator_attribute(estimator=estimator)
+
+ for method_name in self.methods:
+ if hasattr(estimator, method_name):
+ self._uninstrument_instance_method(
+ estimator=estimator, method_name=method_name
+ )
+
+ def _check_instrumented(
+ self,
+ estimator: Union[BaseEstimator, Type[BaseEstimator]],
+ method_name: str,
+ ) -> bool:
+ """Check an estimator-method is instrumented.
+
+ Args:
+ estimator (BaseEstimator): A class or instance of an ``sklearn``
+ estimator.
+ method_name (str): The method name of the estimator on which to
+ check for instrumentation.
+ """
+ orig_method_name = "_otel_original_" + method_name
+ has_original = hasattr(estimator, orig_method_name)
+ orig_class, orig_method = getattr(
+ estimator, orig_method_name, (None, None)
+ )
+ same_class = orig_class == estimator
+ if has_original and same_class:
+ class_method = self._unwrap_function(
+ getattr(estimator, method_name)
+ )
+ # if they match then the subclass doesn't override
+ # if they don't then the overridden method needs instrumentation
+ if class_method.__name__ == orig_method.__name__:
+ return True
+ return False
+
+ def _uninstrument_class_method(
+ self, estimator: Type[BaseEstimator], method_name: str
+ ):
+ """Uninstrument a class method.
+
+ Replaces the patched method with the original, and deletes the
+ attribute which stored the original method.
+
+ Args:
+ estimator (BaseEstimator): A class or instance of an ``sklearn``
+ estimator.
+ method_name (str): The method name of the estimator on which to
+ apply a span.
+ """
+ orig_method_name = "_otel_original_" + method_name
+ if isclass(estimator):
+ qualname = estimator.__qualname__
+ else:
+ qualname = estimator.__class__.__qualname__
+ delegator = get_delegator(estimator, method_name)
+ if self._check_instrumented(estimator, method_name):
+ logger.debug(
+ "Uninstrumenting: %s.%s", qualname, method_name,
+ )
+ _, orig_method = getattr(estimator, orig_method_name)
+ setattr(
+ estimator, method_name, orig_method,
+ )
+ delattr(estimator, orig_method_name)
+ elif delegator is not None:
+ if not hasattr(delegator, "_otel_original_fn"):
+ logger.debug(
+ "Already uninstrumented: %s.%s", qualname, method_name,
+ )
+ return
+ setattr(
+ delegator, "fn", getattr(delegator, "_otel_original_fn"),
+ )
+ delattr(delegator, "_otel_original_fn")
+ else:
+ logger.debug(
+ "Already uninstrumented: %s.%s", qualname, method_name,
+ )
+
+ def _uninstrument_instance_method(
+ self, estimator: BaseEstimator, method_name: str
+ ):
+ """Uninstrument an instance method.
+
+ Replaces the patched method with the original, and deletes the
+ attribute which stored the original method.
+
+ Args:
+ estimator (BaseEstimator): A class or instance of an ``sklearn``
+ estimator.
+ method_name (str): The method name of the estimator on which to
+ apply a span.
+ """
+ orig_method_name = "_otel_original_" + method_name
+ if isclass(estimator):
+ qualname = estimator.__qualname__
+ else:
+ qualname = estimator.__class__.__qualname__
+ if self._check_instrumented(estimator, method_name):
+ logger.debug(
+ "Uninstrumenting: %s.%s", qualname, method_name,
+ )
+ _, orig_method = getattr(estimator, orig_method_name)
+ setattr(
+ estimator, method_name, orig_method,
+ )
+ delattr(estimator, orig_method_name)
+ else:
+ logger.debug(
+ "Already uninstrumented: %s.%s", qualname, method_name,
+ )
+
+ def _instrument_class_method(
+ self,
+ estimator: Type[BaseEstimator],
+ method_name: str,
+ attributes: Attributes = None,
+ ):
+ """Instrument an estimator method with a span.
+
+ When instrumenting we attach a tuple of (Class, method) to the
+ attribute ``_otel_original_`` for each method. This allows
+ us to replace the patched with the original in uninstrumentation, but
+ also allows proper instrumentation of child classes without
+ instrumenting inherited methods twice.
+
+ Args:
+ estimator (BaseEstimator): A ``BaseEstimator``-derived
+ class
+ method_name (str): The method name of the estimator on which to
+ apply a span.
+ attributes (dict): Attributes to attach to the spans.
+ """
+ if self._check_instrumented(estimator, method_name):
+ logger.debug(
+ "Already instrumented: %s.%s",
+ estimator.__qualname__,
+ method_name,
+ )
+ return
+ class_attr = getattr(estimator, method_name)
+ delegator = get_delegator(estimator, method_name)
+ if isinstance(class_attr, property):
+ logger.debug(
+ "Not instrumenting found property: %s.%s",
+ estimator.__qualname__,
+ method_name,
+ )
+ elif delegator is not None:
+ implement_span_delegator(delegator)
+ else:
+ setattr(
+ estimator,
+ "_otel_original_" + method_name,
+ (estimator, class_attr),
+ )
+ setattr(
+ estimator,
+ method_name,
+ implement_span_estimator(class_attr, estimator, attributes),
+ )
+
+ def _unwrap_function(self, function):
+ """Fetch the function underlying any decorators"""
+ if hasattr(function, "__wrapped__"):
+ return self._unwrap_function(function.__wrapped__)
+ return function
+
+ def _instrument_instance_method(
+ self,
+ estimator: BaseEstimator,
+ method_name: str,
+ attributes: Attributes = None,
+ ):
+ """Instrument an estimator instance method with a span.
+
+ When instrumenting we attach a tuple of (Class, method) to the
+ attribute ``_otel_original_`` for each method. This allows
+ us to replace the patched with the original in unstrumentation.
+
+ Args:
+ estimator (BaseEstimator): A fitted ``sklearn`` estimator.
+ method_name (str): The method name of the estimator on which to
+ apply a span.
+ attributes (dict): Attributes to attach to the spans.
+ """
+ if self._check_instrumented(estimator, method_name):
+ logger.debug(
+ "Already instrumented: %s.%s",
+ estimator.__class__.__qualname__,
+ method_name,
+ )
+ return
+
+ class_attr = getattr(type(estimator), method_name, None)
+ if isinstance(class_attr, property):
+ logger.debug(
+ "Not instrumenting found property: %s.%s",
+ estimator.__class__.__qualname__,
+ method_name,
+ )
+ else:
+ method = getattr(estimator, method_name)
+ setattr(
+ estimator, "_otel_original_" + method_name, (estimator, method)
+ )
+ setattr(
+ estimator,
+ method_name,
+ implement_span_estimator(method, estimator, attributes),
+ )
+
+ def _instrument_estimator_attribute(
+ self, estimator: BaseEstimator, attributes: Attributes = None
+ ):
+ """Instrument instance attributes which also contain estimators.
+
+ Handle instance attributes which are also estimators, are a list
+ (Sequence) of estimators, or are mappings (dictionary) in which
+ the values are estimators.
+
+ Examples include ``RandomForestClassifier`` and
+ ``MultiOutputRegressor`` instances which have attributes
+ ``estimators_`` attributes.
+
+ Args:
+ estimator (BaseEstimator): A fitted ``sklearn`` estimator, with an
+ attribute which also contains an estimator or collection of
+ estimators.
+ attributes (dict): Attributes to attach to the spans.
+ """
+ attribs = self.recurse_attribs.get(estimator.__class__, [])
+ for attrib in attribs:
+ attrib_value = getattr(estimator, attrib)
+ if isinstance(attrib_value, Sequence):
+ for value in attrib_value:
+ self.instrument_estimator(
+ estimator=value, attributes=attributes
+ )
+ elif isinstance(attrib_value, MutableMapping):
+ for value in attrib_value.values():
+ self.instrument_estimator(
+ estimator=value, attributes=attributes
+ )
+ else:
+ self.instrument_estimator(
+ estimator=attrib_value, attributes=attributes
+ )
+
+ def _instrument_estimator_namedtuple(
+ self, estimator: BaseEstimator, attributes: Attributes = None
+ ):
+ """Instrument attributes with (name, estimator) tupled components.
+
+ Examples include Pipeline and FeatureUnion instances which
+ have attributes steps and transformer_list, respectively.
+
+ Args:
+ estimator: A fitted sklearn estimator, with an attribute which also
+ contains an estimator or collection of estimators.
+ attributes (dict): Attributes to attach to the spans.
+ """
+ attribs = self.recurse_namedtuple_attribs.get(estimator.__class__, [])
+ for attrib in attribs:
+ for _, est in getattr(estimator, attrib):
+ self.instrument_estimator(estimator=est, attributes=attributes)
+
+ def _uninstrument_estimator_attribute(self, estimator: BaseEstimator):
+ """Uninstrument instance attributes which also contain estimators.
+
+ Handle instance attributes which are also estimators, are a list
+ (Sequence) of estimators, or are mappings (dictionary) in which
+ the values are estimators.
+
+ Examples include ``RandomForestClassifier`` and
+ ``MultiOutputRegressor`` instances which have attributes
+ ``estimators_`` attributes.
+
+ Args:
+ estimator (BaseEstimator): A fitted ``sklearn`` estimator, with an
+ attribute which also contains an estimator or collection of
+ estimators.
+ """
+ attribs = self.recurse_attribs.get(estimator.__class__, [])
+ for attrib in attribs:
+ attrib_value = getattr(estimator, attrib)
+ if isinstance(attrib_value, Sequence):
+ for value in attrib_value:
+ self.uninstrument_estimator(estimator=value)
+ elif isinstance(attrib_value, MutableMapping):
+ for value in attrib_value.values():
+ self.uninstrument_estimator(estimator=value)
+ else:
+ self.uninstrument_estimator(estimator=attrib_value)
+
+ def _uninstrument_estimator_namedtuple(self, estimator: BaseEstimator):
+ """Uninstrument attributes with (name, estimator) tupled components.
+
+ Examples include Pipeline and FeatureUnion instances which
+ have attributes steps and transformer_list, respectively.
+
+ Args:
+ estimator: A fitted sklearn estimator, with an attribute which also
+ contains an estimator or collection of estimators.
+ """
+ attribs = self.recurse_namedtuple_attribs.get(estimator.__class__, [])
+ for attrib in attribs:
+ for _, est in getattr(estimator, attrib):
+ self.uninstrument_estimator(estimator=est)
diff --git a/instrumentation/opentelemetry-instrumentation-sklearn/src/opentelemetry/instrumentation/sklearn/version.py b/instrumentation/opentelemetry-instrumentation-sklearn/src/opentelemetry/instrumentation/sklearn/version.py
new file mode 100644
index 0000000000..bb32120c79
--- /dev/null
+++ b/instrumentation/opentelemetry-instrumentation-sklearn/src/opentelemetry/instrumentation/sklearn/version.py
@@ -0,0 +1,15 @@
+# Copyright 2020, OpenTelemetry Authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+__version__ = "0.16.dev0"
diff --git a/instrumentation/opentelemetry-instrumentation-sklearn/tests/__init__.py b/instrumentation/opentelemetry-instrumentation-sklearn/tests/__init__.py
new file mode 100644
index 0000000000..e69de29bb2
diff --git a/instrumentation/opentelemetry-instrumentation-sklearn/tests/fixtures.py b/instrumentation/opentelemetry-instrumentation-sklearn/tests/fixtures.py
new file mode 100644
index 0000000000..cf26c0fcf2
--- /dev/null
+++ b/instrumentation/opentelemetry-instrumentation-sklearn/tests/fixtures.py
@@ -0,0 +1,54 @@
+# Copyright 2020, OpenTelemetry Authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import numpy as np
+from sklearn.datasets import load_iris
+from sklearn.decomposition import PCA, TruncatedSVD
+from sklearn.ensemble import RandomForestClassifier
+from sklearn.model_selection import train_test_split
+from sklearn.pipeline import FeatureUnion, Pipeline
+from sklearn.preprocessing import Normalizer, StandardScaler
+
+X, y = load_iris(return_X_y=True)
+X_train, X_test, y_train, y_test = train_test_split(X, y)
+
+
+def pipeline():
+ """A dummy model that has a bunch of components that we can test."""
+ model = Pipeline(
+ [
+ ("scaler", StandardScaler()),
+ ("normal", Normalizer()),
+ (
+ "union",
+ FeatureUnion(
+ [
+ ("pca", PCA(n_components=1)),
+ ("svd", TruncatedSVD(n_components=2)),
+ ],
+ n_jobs=1, # parallelized components won't generate spans
+ ),
+ ),
+ ("class", RandomForestClassifier(n_estimators=10)),
+ ]
+ )
+ model.fit(X_train, y_train)
+ return model
+
+
+def random_input():
+ """A random record from the feature set."""
+ rows = X.shape[0]
+ random_row = np.random.choice(rows, size=1)
+ return X[random_row, :]
diff --git a/instrumentation/opentelemetry-instrumentation-sklearn/tests/test_sklearn.py b/instrumentation/opentelemetry-instrumentation-sklearn/tests/test_sklearn.py
new file mode 100644
index 0000000000..ad4d032280
--- /dev/null
+++ b/instrumentation/opentelemetry-instrumentation-sklearn/tests/test_sklearn.py
@@ -0,0 +1,189 @@
+# Copyright 2020, OpenTelemetry Authors
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from sklearn.ensemble import RandomForestClassifier
+
+from opentelemetry.instrumentation.sklearn import (
+ DEFAULT_EXCLUDE_CLASSES,
+ DEFAULT_METHODS,
+ SklearnInstrumentor,
+ get_base_estimators,
+ get_delegator,
+)
+from opentelemetry.test.test_base import TestBase
+from opentelemetry.trace import SpanKind
+
+from .fixtures import pipeline, random_input
+
+
+def assert_instrumented(base_estimators):
+ for _, estimator in base_estimators.items():
+ for method_name in DEFAULT_METHODS:
+ original_method_name = "_otel_original_" + method_name
+ if issubclass(estimator, tuple(DEFAULT_EXCLUDE_CLASSES)):
+ assert not hasattr(estimator, original_method_name)
+ continue
+ class_attr = getattr(estimator, method_name, None)
+ if isinstance(class_attr, property):
+ assert not hasattr(estimator, original_method_name)
+ continue
+ delegator = None
+ if hasattr(estimator, method_name):
+ delegator = get_delegator(estimator, method_name)
+ if delegator is not None:
+ assert hasattr(delegator, "_otel_original_fn")
+ elif hasattr(estimator, method_name):
+ assert hasattr(estimator, original_method_name)
+
+
+def assert_uninstrumented(base_estimators):
+ for _, estimator in base_estimators.items():
+ for method_name in DEFAULT_METHODS:
+ original_method_name = "_otel_original_" + method_name
+ if issubclass(estimator, tuple(DEFAULT_EXCLUDE_CLASSES)):
+ assert not hasattr(estimator, original_method_name)
+ continue
+ class_attr = getattr(estimator, method_name, None)
+ if isinstance(class_attr, property):
+ assert not hasattr(estimator, original_method_name)
+ continue
+ delegator = None
+ if hasattr(estimator, method_name):
+ delegator = get_delegator(estimator, method_name)
+ if delegator is not None:
+ assert not hasattr(delegator, "_otel_original_fn")
+ elif hasattr(estimator, method_name):
+ assert not hasattr(estimator, original_method_name)
+
+
+class TestSklearn(TestBase):
+ def test_package_instrumentation(self):
+ ski = SklearnInstrumentor()
+
+ base_estimators = get_base_estimators(packages=["sklearn"])
+
+ model = pipeline()
+
+ ski.instrument()
+ assert_instrumented(base_estimators)
+
+ x_test = random_input()
+
+ model.predict(x_test)
+
+ spans = self.memory_exporter.get_finished_spans()
+ self.assertEqual(len(spans), 8)
+ self.memory_exporter.clear()
+
+ ski.uninstrument()
+ assert_uninstrumented(base_estimators)
+
+ model = pipeline()
+ x_test = random_input()
+
+ model.predict(x_test)
+
+ spans = self.memory_exporter.get_finished_spans()
+ self.assertEqual(len(spans), 0)
+
+ def test_span_properties(self):
+ """Test that we get all of the spans we expect."""
+ model = pipeline()
+ ski = SklearnInstrumentor()
+ ski.instrument_estimator(estimator=model)
+
+ x_test = random_input()
+
+ model.predict(x_test)
+
+ spans = self.memory_exporter.get_finished_spans()
+ self.assertEqual(len(spans), 8)
+ span = spans[0]
+ self.assertEqual(span.name, "StandardScaler.transform")
+ self.assertEqual(span.kind, SpanKind.INTERNAL)
+ self.assertEqual(span.parent.span_id, spans[-1].context.span_id)
+ span = spans[1]
+ self.assertEqual(span.name, "Normalizer.transform")
+ self.assertEqual(span.kind, SpanKind.INTERNAL)
+ self.assertEqual(span.parent.span_id, spans[-1].context.span_id)
+ span = spans[2]
+ self.assertEqual(span.name, "PCA.transform")
+ self.assertEqual(span.kind, SpanKind.INTERNAL)
+ self.assertEqual(span.parent.span_id, spans[4].context.span_id)
+ span = spans[3]
+ self.assertEqual(span.name, "TruncatedSVD.transform")
+ self.assertEqual(span.kind, SpanKind.INTERNAL)
+ self.assertEqual(span.parent.span_id, spans[4].context.span_id)
+ span = spans[4]
+ self.assertEqual(span.name, "FeatureUnion.transform")
+ self.assertEqual(span.kind, SpanKind.INTERNAL)
+ self.assertEqual(span.parent.span_id, spans[-1].context.span_id)
+ span = spans[5]
+ self.assertEqual(span.name, "RandomForestClassifier.predict_proba")
+ self.assertEqual(span.kind, SpanKind.INTERNAL)
+ self.assertEqual(span.parent.span_id, spans[6].context.span_id)
+ span = spans[6]
+ self.assertEqual(span.name, "RandomForestClassifier.predict")
+ self.assertEqual(span.kind, SpanKind.INTERNAL)
+ self.assertEqual(span.parent.span_id, spans[-1].context.span_id)
+ span = spans[7]
+ self.assertEqual(span.name, "Pipeline.predict")
+ self.assertEqual(span.kind, SpanKind.INTERNAL)
+
+ self.memory_exporter.clear()
+
+ # uninstrument
+ ski.uninstrument_estimator(estimator=model)
+ x_test = random_input()
+ model.predict(x_test)
+ spans = self.memory_exporter.get_finished_spans()
+ self.assertEqual(len(spans), 0)
+
+ def test_attrib_config(self):
+ """Test that the attribute config makes spans on the decision trees."""
+ model = pipeline()
+ attrib_config = {RandomForestClassifier: ["estimators_"]}
+ ski = SklearnInstrumentor(
+ recurse_attribs=attrib_config,
+ exclude_classes=[], # decision trees excluded by default
+ )
+ ski.instrument_estimator(estimator=model)
+
+ x_test = random_input()
+ model.predict(x_test)
+
+ spans = self.memory_exporter.get_finished_spans()
+ self.assertEqual(len(spans), 8 + model.steps[-1][-1].n_estimators)
+
+ self.memory_exporter.clear()
+
+ ski.uninstrument_estimator(estimator=model)
+ x_test = random_input()
+ model.predict(x_test)
+ spans = self.memory_exporter.get_finished_spans()
+ self.assertEqual(len(spans), 0)
+
+ def test_span_attributes(self):
+ model = pipeline()
+ attributes = {"model_name": "random_forest_model"}
+ ski = SklearnInstrumentor()
+ ski.instrument_estimator(estimator=model, attributes=attributes)
+
+ x_test = random_input()
+
+ model.predict(x_test)
+
+ spans = self.memory_exporter.get_finished_spans()
+ for span in spans:
+ assert span.attributes["model_name"] == "random_forest_model"