diff --git a/README.md b/README.md index d61fdee644..578c3cce8b 100644 --- a/README.md +++ b/README.md @@ -197,7 +197,7 @@ openai.api_key = "sk-..." # supply your API key however you choose text_string = "sample text" # choose an embedding -model_id = "text-similarity-davinci-001" +model_id = "text-embedding-ada-002" # compute the embedding of the text embedding = openai.Embedding.create(input=text_string, model=model_id)['data'][0]['embedding'] diff --git a/openai/embeddings_utils.py b/openai/embeddings_utils.py index f1d438c9c0..ca30545826 100644 --- a/openai/embeddings_utils.py +++ b/openai/embeddings_utils.py @@ -15,7 +15,7 @@ @retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6)) -def get_embedding(text: str, engine="text-similarity-davinci-001", **kwargs) -> List[float]: +def get_embedding(text: str, engine="text-embedding-ada-002", **kwargs) -> List[float]: # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") @@ -25,7 +25,7 @@ def get_embedding(text: str, engine="text-similarity-davinci-001", **kwargs) -> @retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6)) async def aget_embedding( - text: str, engine="text-similarity-davinci-001", **kwargs + text: str, engine="text-embedding-ada-002", **kwargs ) -> List[float]: # replace newlines, which can negatively affect performance.