@@ -1091,8 +1091,9 @@ class CV_EXPORTS_W TrackerMIL : public Tracker
1091
1091
virtual ~TrackerMIL () CV_OVERRIDE {}
1092
1092
};
1093
1093
1094
- /* * @brief This is a real-time object tracking based on a novel on-line version of the AdaBoost algorithm.
1094
+ /* * @brief the Boosting tracker
1095
1095
1096
+ This is a real-time object tracking based on a novel on-line version of the AdaBoost algorithm.
1096
1097
The classifier uses the surrounding background as negative examples in update step to avoid the
1097
1098
drifting problem. The implementation is based on @cite OLB .
1098
1099
*/
@@ -1128,7 +1129,7 @@ class CV_EXPORTS_W TrackerBoosting : public Tracker
1128
1129
virtual ~TrackerBoosting () CV_OVERRIDE {}
1129
1130
};
1130
1131
1131
- /* * @brief Median Flow tracker implementation.
1132
+ /* * @brief the Median Flow tracker
1132
1133
1133
1134
Implementation of a paper @cite MedianFlow .
1134
1135
@@ -1167,15 +1168,17 @@ class CV_EXPORTS_W TrackerMedianFlow : public Tracker
1167
1168
virtual ~TrackerMedianFlow () CV_OVERRIDE {}
1168
1169
};
1169
1170
1170
- /* * @brief TLD is a novel tracking framework that explicitly decomposes the long-term tracking task into
1171
+ /* * @brief the TLD (Tracking, learning and detection) tracker
1172
+
1173
+ TLD is a novel tracking framework that explicitly decomposes the long-term tracking task into
1171
1174
tracking, learning and detection.
1172
1175
1173
1176
The tracker follows the object from frame to frame. The detector localizes all appearances that
1174
1177
have been observed so far and corrects the tracker if necessary. The learning estimates detector's
1175
1178
errors and updates it to avoid these errors in the future. The implementation is based on @cite TLD .
1176
1179
1177
1180
The Median Flow algorithm (see cv::TrackerMedianFlow) was chosen as a tracking component in this
1178
- implementation, following authors. Tracker is supposed to be able to handle rapid motions, partial
1181
+ implementation, following authors. The tracker is supposed to be able to handle rapid motions, partial
1179
1182
occlusions, object absence etc.
1180
1183
*/
1181
1184
class CV_EXPORTS_W TrackerTLD : public Tracker
@@ -1198,7 +1201,9 @@ class CV_EXPORTS_W TrackerTLD : public Tracker
1198
1201
virtual ~TrackerTLD () CV_OVERRIDE {}
1199
1202
};
1200
1203
1201
- /* * @brief KCF is a novel tracking framework that utilizes properties of circulant matrix to enhance the processing speed.
1204
+ /* * @brief the KCF (Kernelized Correlation Filter) tracker
1205
+
1206
+ * KCF is a novel tracking framework that utilizes properties of circulant matrix to enhance the processing speed.
1202
1207
* This tracking method is an implementation of @cite KCF_ECCV which is extended to KCF with color-names features (@cite KCF_CN).
1203
1208
* The original paper of KCF is available at <http://www.robots.ox.ac.uk/~joao/publications/henriques_tpami2015.pdf>
1204
1209
* as well as the matlab implementation. For more information about KCF with color-names features, please refer to
@@ -1264,7 +1269,9 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
1264
1269
virtual ~TrackerKCF () CV_OVERRIDE {}
1265
1270
};
1266
1271
1267
- /* * @brief GOTURN (@cite GOTURN) is kind of trackers based on Convolutional Neural Networks (CNN). While taking all advantages of CNN trackers,
1272
+ /* * @brief the GOTURN (Generic Object Tracking Using Regression Networks) tracker
1273
+
1274
+ * GOTURN (@cite GOTURN) is kind of trackers based on Convolutional Neural Networks (CNN). While taking all advantages of CNN trackers,
1268
1275
* GOTURN is much faster due to offline training without online fine-tuning nature.
1269
1276
* GOTURN tracker addresses the problem of single target tracking: given a bounding box label of an object in the first frame of the video,
1270
1277
* we track that object through the rest of the video. NOTE: Current method of GOTURN does not handle occlusions; however, it is fairly
@@ -1297,9 +1304,10 @@ class CV_EXPORTS_W TrackerGOTURN : public Tracker
1297
1304
virtual ~TrackerGOTURN () CV_OVERRIDE {}
1298
1305
};
1299
1306
1300
- /* * @brief the MOSSE tracker
1301
- note, that this tracker works with grayscale images, if passed bgr ones, they will get converted internally.
1302
- @cite MOSSE Visual Object Tracking using Adaptive Correlation Filters
1307
+ /* * @brief the MOSSE (Minimum Output Sum of Squared %Error) tracker
1308
+
1309
+ The implementation is based on @cite MOSSE Visual Object Tracking using Adaptive Correlation Filters
1310
+ @note this tracker works with grayscale images, if passed bgr ones, they will get converted internally.
1303
1311
*/
1304
1312
1305
1313
class CV_EXPORTS_W TrackerMOSSE : public Tracker
@@ -1315,7 +1323,8 @@ class CV_EXPORTS_W TrackerMOSSE : public Tracker
1315
1323
1316
1324
/* *********************************** MultiTracker Class ---By Laksono Kurnianggoro---) ************************************/
1317
1325
/* * @brief This class is used to track multiple objects using the specified tracker algorithm.
1318
- * The MultiTracker is naive implementation of multiple object tracking.
1326
+
1327
+ * The %MultiTracker is naive implementation of multiple object tracking.
1319
1328
* It process the tracked objects independently without any optimization accross the tracked objects.
1320
1329
*/
1321
1330
class CV_EXPORTS_W MultiTracker : public Algorithm
@@ -1431,15 +1440,17 @@ class CV_EXPORTS MultiTracker_Alt
1431
1440
std::vector<Scalar> colors;
1432
1441
};
1433
1442
1434
- /* * @brief Multi Object Tracker for TLD. TLD is a novel tracking framework that explicitly decomposes
1443
+ /* * @brief Multi Object %Tracker for TLD.
1444
+
1445
+ TLD is a novel tracking framework that explicitly decomposes
1435
1446
the long-term tracking task into tracking, learning and detection.
1436
1447
1437
1448
The tracker follows the object from frame to frame. The detector localizes all appearances that
1438
1449
have been observed so far and corrects the tracker if necessary. The learning estimates detector's
1439
1450
errors and updates it to avoid these errors in the future. The implementation is based on @cite TLD .
1440
1451
1441
1452
The Median Flow algorithm (see cv::TrackerMedianFlow) was chosen as a tracking component in this
1442
- implementation, following authors. Tracker is supposed to be able to handle rapid motions, partial
1453
+ implementation, following authors. The tracker is supposed to be able to handle rapid motions, partial
1443
1454
occlusions, object absence etc.
1444
1455
1445
1456
@sa Tracker, MultiTracker, TrackerTLD
@@ -1460,10 +1471,10 @@ class CV_EXPORTS MultiTrackerTLD : public MultiTracker_Alt
1460
1471
bool update_opt (InputArray image);
1461
1472
};
1462
1473
1463
- // ! @}
1464
-
1465
1474
/* ********************************** CSRT ************************************/
1466
- /* * @brief Discriminative Correlation Filter Tracker with Channel and Spatial Reliability
1475
+ /* * @brief the CSRT tracker
1476
+
1477
+ The implementation is based on @cite Lukezic_IJCV2018 Discriminative Correlation Filter with Channel and Spatial Reliability
1467
1478
*/
1468
1479
class CV_EXPORTS_W TrackerCSRT : public Tracker
1469
1480
{
@@ -1476,12 +1487,12 @@ class CV_EXPORTS_W TrackerCSRT : public Tracker
1476
1487
Params ();
1477
1488
1478
1489
/* *
1479
- * \brief Read parameters from file
1490
+ * \brief Read parameters from a file
1480
1491
*/
1481
1492
void read (const FileNode& /* fn*/ );
1482
1493
1483
1494
/* *
1484
- * \brief Write parameters from file
1495
+ * \brief Write parameters to a file
1485
1496
*/
1486
1497
void write (cv::FileStorage& fs) const ;
1487
1498
@@ -1529,6 +1540,7 @@ class CV_EXPORTS_W TrackerCSRT : public Tracker
1529
1540
virtual ~TrackerCSRT () CV_OVERRIDE {}
1530
1541
};
1531
1542
1543
+ // ! @}
1532
1544
} /* namespace cv */
1533
1545
1534
1546
#endif
0 commit comments