-
Notifications
You must be signed in to change notification settings - Fork 5.8k
Test code - GpuMatND & Mat interoperability #2805
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,250 @@ | ||
// This file is part of OpenCV project. | ||
// It is subject to the license terms in the LICENSE file found in the top-level directory | ||
// of this distribution and at http://opencv.org/license.html. | ||
#include "test_precomp.hpp" | ||
|
||
namespace opencv_test { namespace { | ||
|
||
template <typename ElemType> | ||
class GpuMatNDTest : public ::testing::Test | ||
{ | ||
public: | ||
using MatType = Mat_<ElemType>; | ||
using CnType = typename Mat_<ElemType>::channel_type; | ||
static constexpr int cn = DataType<ElemType>::channels; | ||
using SizeArray = GpuMatND::SizeArray; | ||
|
||
static MatType RandomMat(const SizeArray& size) | ||
{ | ||
const auto dims = static_cast<int>(size.size()); | ||
|
||
MatType ret(dims, size.data()); | ||
|
||
for (ElemType& elem : ret) | ||
for (int i = 0; i < cn; ++i) | ||
elem[i] = cv::randu<CnType>(); | ||
|
||
return ret; | ||
} | ||
|
||
static std::vector<Range> RandomRange(const SizeArray& size) | ||
{ | ||
const auto dims = static_cast<int>(size.size()); | ||
|
||
std::vector<Range> ret; | ||
|
||
const auto margin = cv::randu<int>() & 0x1 + 1; // 1 or 2 | ||
|
||
for (int s : size) | ||
if (s > margin * 2) | ||
ret.emplace_back(margin, s-margin); | ||
else | ||
ret.push_back(Range::all()); | ||
|
||
if (dims == 1) | ||
{ | ||
// Mat expects two ranges even in this case | ||
ret.push_back(Range::all()); | ||
} | ||
|
||
return ret; | ||
} | ||
|
||
static std::vector<Range> RandomRange2D(const SizeArray& size) | ||
{ | ||
const auto dims = static_cast<int>(size.size()); | ||
|
||
std::vector<Range> ret = RandomRange(size); | ||
|
||
for (int i = 0; i < dims - 2; ++i) | ||
{ | ||
const auto start = cv::randu<unsigned int>() % size[i]; | ||
ret[i] = Range(static_cast<int>(start), static_cast<int>(start) + 1); | ||
} | ||
|
||
return ret; | ||
} | ||
|
||
static void doTest1(const SizeArray& size) | ||
{ | ||
const MatType gold = RandomMat(size); | ||
|
||
MatType dst; | ||
GpuMatND gmat; | ||
|
||
// simple upload, download test for GpuMatND | ||
gmat.upload(gold); | ||
gmat.download(dst); | ||
EXPECT_TRUE(std::equal(gold.begin(), gold.end(), dst.begin())); | ||
} | ||
|
||
static void doTest2(const SizeArray& size) | ||
{ | ||
const MatType gold = RandomMat(size); | ||
const std::vector<Range> ranges = RandomRange(size); | ||
const MatType goldSub = gold(ranges); | ||
|
||
MatType dst; | ||
GpuMatND gmat; | ||
|
||
// upload partial mat, download it, and compare | ||
gmat.upload(goldSub); | ||
gmat.download(dst); | ||
EXPECT_TRUE(std::equal(goldSub.begin(), goldSub.end(), dst.begin())); | ||
|
||
// upload full mat, extract partial mat from it, download it, and compare | ||
gmat.upload(gold); | ||
gmat = gmat(ranges); | ||
gmat.download(dst); | ||
EXPECT_TRUE(std::equal(goldSub.begin(), goldSub.end(), dst.begin())); | ||
} | ||
|
||
static void doTest3(const SizeArray& size) | ||
{ | ||
if (std::is_same<CnType, float16_t>::value) // GpuMat::convertTo is not implemented for CV_16F | ||
return; | ||
|
||
const MatType gold = RandomMat(size); | ||
const std::vector<Range> ranges = RandomRange2D(size); | ||
|
||
MatType dst; | ||
GpuMatND gmat; | ||
|
||
// Test GpuMatND to GpuMat conversion: | ||
// extract a 2D-plane and set its elements in the extracted region to 1 | ||
// compare the values of the full mat between Mat and GpuMatND | ||
|
||
gmat.upload(gold); | ||
GpuMat plane = gmat(ranges).createGpuMatHeader(); | ||
EXPECT_TRUE(!plane.refcount); // plane points to externally allocated memory(a part of gmat) | ||
|
||
const GpuMat dummy = plane.clone(); | ||
EXPECT_TRUE(dummy.refcount); // dummy is clone()-ed from plane, so it manages its memory | ||
|
||
// currently, plane(GpuMat) points to a sub-matrix of gmat(GpuMatND) | ||
// in this case, dummy and plane have same size and type, | ||
// so plane does not get reallocated inside convertTo, | ||
// so this convertTo sets a sub-matrix region of gmat to 1 | ||
dummy.convertTo(plane, -1, 0, 1); | ||
EXPECT_TRUE(!plane.refcount); // plane still points to externally allocated memory(a part of gmat) | ||
|
||
gmat.download(dst); | ||
|
||
// set a sub-matrix region of gold to 1 | ||
Mat plane_ = gold(ranges); | ||
const Mat dummy_ = plane_.clone(); | ||
dummy_.convertTo(plane_, -1, 0, 1); | ||
|
||
EXPECT_TRUE(std::equal(gold.begin(), gold.end(), dst.begin())); | ||
} | ||
|
||
static void doTest4(const SizeArray& size) | ||
{ | ||
if (std::is_same<CnType, float16_t>::value) // GpuMat::convertTo is not implemented for CV_16F | ||
return; | ||
|
||
const MatType gold = RandomMat(size); | ||
const std::vector<Range> ranges = RandomRange2D(size); | ||
|
||
MatType dst; | ||
GpuMatND gmat; | ||
|
||
// Test handling external memory | ||
gmat.upload(gold); | ||
const GpuMatND external(gmat.size, gmat.type(), gmat.getDevicePtr(), {gmat.step.begin(), gmat.step.end() - 1}); | ||
|
||
// set a sub-matrix region of external to 2 | ||
GpuMat plane = external(ranges).createGpuMatHeader(); | ||
const GpuMat dummy = plane.clone(); | ||
dummy.convertTo(plane, -1, 0, 2); | ||
external.download(dst); | ||
|
||
// set a sub-matrix region of gold to 2 | ||
Mat plane_ = gold(ranges); | ||
const Mat dummy_ = plane_.clone(); | ||
dummy_.convertTo(plane_, -1, 0, 2); | ||
|
||
EXPECT_TRUE(std::equal(gold.begin(), gold.end(), dst.begin())); | ||
} | ||
|
||
static void doTest5(const SizeArray& size) | ||
{ | ||
if (std::is_same<CnType, float16_t>::value) // GpuMat::convertTo is not implemented for CV_16F | ||
return; | ||
|
||
const MatType gold = RandomMat(size); | ||
const std::vector<Range> ranges = RandomRange(size); | ||
MatType goldSub = gold(ranges); | ||
|
||
MatType dst; | ||
GpuMatND gmat; | ||
|
||
// Upload a sub-mat, set a sub-region of the sub-mat to 3, download, and compare | ||
gmat.upload(goldSub); | ||
const std::vector<Range> rangesInRanges = RandomRange2D(gmat.size); | ||
|
||
GpuMat plane = gmat(rangesInRanges).createGpuMatHeader(); | ||
const GpuMat dummy = plane.clone(); | ||
dummy.convertTo(plane, -1, 0, 3); | ||
gmat.download(dst); | ||
|
||
Mat plane_ = goldSub(rangesInRanges); | ||
const Mat dummy_ = plane_.clone(); | ||
dummy_.convertTo(plane_, -1, 0, 3); | ||
|
||
EXPECT_TRUE(std::equal(goldSub.begin(), goldSub.end(), dst.begin())); | ||
} | ||
}; | ||
|
||
using ElemTypes = ::testing::Types< | ||
Vec<uchar, 1>, Vec<uchar, 2>, Vec<uchar, 3>, Vec<uchar, 4>, // CV_8U | ||
Vec<schar, 1>, Vec<schar, 2>, Vec<schar, 3>, Vec<schar, 4>, // CV_8S | ||
Vec<ushort, 1>, Vec<ushort, 2>, Vec<ushort, 3>, Vec<ushort, 4>, // CV_16U | ||
Vec<short, 1>, Vec<short, 2>, Vec<short, 3>, Vec<short, 4>, // CV_16S | ||
Vec<int, 1>, Vec<int, 2>, Vec<int, 3>, Vec<int, 4>, // CV_32S | ||
Vec<float, 1>, Vec<float, 2>, Vec<float, 3>, Vec<float, 4>, // CV_32F | ||
Vec<double, 1>, Vec<double, 2>, Vec<double, 3>, Vec<double, 4>, //CV_64F | ||
Vec<float16_t, 1>, Vec<float16_t, 2>, Vec<float16_t, 3>, Vec<float16_t, 4> // CV_16F | ||
>; | ||
|
||
using SizeArray = GpuMatND::SizeArray; | ||
|
||
#define DIFFERENT_SIZES_ND std::vector<SizeArray>{ \ | ||
SizeArray{2, 1}, SizeArray{3, 2, 1}, SizeArray{1, 3, 2, 1}, SizeArray{2, 1, 3, 2, 1}, SizeArray{3, 2, 1, 3, 2, 1}, \ | ||
SizeArray{1}, SizeArray{1, 1}, SizeArray{1, 1, 1}, SizeArray{1, 1, 1, 1}, \ | ||
SizeArray{4}, SizeArray{4, 4}, SizeArray{4, 4, 4}, SizeArray{4, 4, 4, 4}, \ | ||
SizeArray{11}, SizeArray{13, 11}, SizeArray{17, 13, 11}, SizeArray{19, 17, 13, 11}} | ||
|
||
TYPED_TEST_CASE(GpuMatNDTest, ElemTypes); | ||
|
||
TYPED_TEST(GpuMatNDTest, Test1) | ||
{ | ||
for (auto& size : DIFFERENT_SIZES_ND) | ||
GpuMatNDTest<TypeParam>::doTest1(size); | ||
} | ||
|
||
TYPED_TEST(GpuMatNDTest, Test2) | ||
{ | ||
for (auto& size : DIFFERENT_SIZES_ND) | ||
GpuMatNDTest<TypeParam>::doTest2(size); | ||
} | ||
|
||
TYPED_TEST(GpuMatNDTest, Test3) | ||
{ | ||
for (auto& size : DIFFERENT_SIZES_ND) | ||
GpuMatNDTest<TypeParam>::doTest3(size); | ||
} | ||
|
||
TYPED_TEST(GpuMatNDTest, Test4) | ||
{ | ||
for (auto& size : DIFFERENT_SIZES_ND) | ||
GpuMatNDTest<TypeParam>::doTest4(size); | ||
} | ||
|
||
TYPED_TEST(GpuMatNDTest, Test5) | ||
{ | ||
for (auto& size : DIFFERENT_SIZES_ND) | ||
GpuMatNDTest<TypeParam>::doTest5(size); | ||
} | ||
|
||
}} // namespace |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please use short license header: https://github.com/opencv/opencv/wiki/Coding_Style_Guide#file-structure