From 87ce2b7345730ac73947e128d41441d8e489bdfc Mon Sep 17 00:00:00 2001
From: pathbreak <5163416+pathbreak@users.noreply.github.com>
Date: Tue, 6 Apr 2021 22:47:38 +0530
Subject: [PATCH] dnn_superres: Fix arXiv URL typos in README.md
---
modules/dnn_superres/README.md | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/modules/dnn_superres/README.md b/modules/dnn_superres/README.md
index b47772b049a..b8a4250ac83 100644
--- a/modules/dnn_superres/README.md
+++ b/modules/dnn_superres/README.md
@@ -40,7 +40,7 @@ Trained models can be downloaded from [here](https://github.com/fannymonori/TF-E
- Advantage: It is tiny and fast, and still performs well.
- Disadvantage: Perform worse visually than newer, more robust models.
- Speed: < 0.01 sec for every scaling factor on 256x256 images on an Intel i7-9700K CPU.
-- Original paper: [Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network](https://arxiv.org/pdf/1707.02921.pdf) [2]
+- Original paper: [Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network](https://arxiv.org/pdf/1609.05158.pdf) [2]
#### FSRCNN
@@ -66,7 +66,7 @@ Trained models can be downloaded from [here](https://github.com/fannymonori/TF-L
- Advantage: The model can do multi-scale super-resolution with one forward pass. It can now support 2x, 4x, 8x, and [2x, 4x] and [2x, 4x, 8x] super-resolution.
- Disadvantage: It is slower than ESPCN and FSRCNN, and the accuracy is worse than EDSR.
- Speed: < 0.1 sec for every scaling factor on 256x256 images on an Intel i7-9700K CPU.
-- Original paper: [Deep laplacian pyramid networks for fast and accurate super-resolution](https://arxiv.org/pdf/1707.02921.pdf) [4]
+- Original paper: [Deep laplacian pyramid networks for fast and accurate super-resolution](https://arxiv.org/pdf/1704.03915.pdf) [4]
### Benchmarks
@@ -92,4 +92,4 @@ Refer to the benchmarks located in the tutorials for more detailed benchmarking.
[3] Chao Dong, Chen Change Loy, Xiaoou Tang. **"Accelerating the Super-Resolution Convolutional Neural Network"**, in Proceedings of European Conference on Computer Vision **ECCV 2016**. [[PDF](http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2016_accelerating.pdf)]
[[arXiv](https://arxiv.org/abs/1608.00367)] [[Project Page](http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html)]
-[4] Lai, W. S., Huang, J. B., Ahuja, N., and Yang, M. H., **"Deep laplacian pyramid networks for fast and accurate super-resolution"**, In Proceedings of the IEEE conference on computer vision and pattern recognition **CVPR 2017**. [[PDF](http://openaccess.thecvf.com/content_cvpr_2017/papers/Lai_Deep_Laplacian_Pyramid_CVPR_2017_paper.pdf)] [[arXiv](https://arxiv.org/abs/1710.01992)] [[Project Page](http://vllab.ucmerced.edu/wlai24/LapSRN/)]
+[4] Lai, W. S., Huang, J. B., Ahuja, N., and Yang, M. H., **"Deep laplacian pyramid networks for fast and accurate super-resolution"**, In Proceedings of the IEEE conference on computer vision and pattern recognition **CVPR 2017**. [[PDF](http://openaccess.thecvf.com/content_cvpr_2017/papers/Lai_Deep_Laplacian_Pyramid_CVPR_2017_paper.pdf)] [[arXiv](https://arxiv.org/abs/1704.03915)] [[Project Page](http://vllab.ucmerced.edu/wlai24/LapSRN/)]