-
Notifications
You must be signed in to change notification settings - Fork 537
/
Copy pathassembly.py
142 lines (113 loc) · 4.87 KB
/
assembly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
This script builds a single PWR assembly and is a slightly more advanced
demonstration of model building using Python. The creation of two universes for
fuel pins and guide tube pins has been separated into functions, and then the
overall model is built by an `assembly` function. This script also demonstrates
the use of the `Model` class, which provides some extra convenience over using
`Geometry`, `Materials`, and `Settings` classes directly. Finally, the script
takes two command-line flags that indicate whether to build and/or run the
model.
"""
import argparse
from math import log10
import numpy as np
import openmc
# Define surfaces
fuel_or = openmc.ZCylinder(r=0.39218, name='Fuel OR')
clad_or = openmc.ZCylinder(r=0.45720, name='Clad OR')
# Define materials
fuel = openmc.Material(name='Fuel')
fuel.set_density('g/cm3', 10.29769)
fuel.add_nuclide('U234', 4.4843e-6)
fuel.add_nuclide('U235', 5.5815e-4)
fuel.add_nuclide('U238', 2.2408e-2)
fuel.add_nuclide('O16', 4.5829e-2)
clad = openmc.Material(name='Cladding')
clad.set_density('g/cm3', 6.55)
clad.add_nuclide('Zr90', 2.1827e-2)
clad.add_nuclide('Zr91', 4.7600e-3)
clad.add_nuclide('Zr92', 7.2758e-3)
clad.add_nuclide('Zr94', 7.3734e-3)
clad.add_nuclide('Zr96', 1.1879e-3)
hot_water = openmc.Material(name='Hot borated water')
hot_water.set_density('g/cm3', 0.740582)
hot_water.add_nuclide('H1', 4.9457e-2)
hot_water.add_nuclide('O16', 2.4672e-2)
hot_water.add_nuclide('B10', 8.0042e-6)
hot_water.add_nuclide('B11', 3.2218e-5)
hot_water.add_s_alpha_beta('c_H_in_H2O')
def fuel_pin():
"""Returns a fuel pin universe."""
fuel_cell = openmc.Cell(fill=fuel, region=-fuel_or)
clad_cell = openmc.Cell(fill=clad, region=+fuel_or & -clad_or)
hot_water_cell = openmc.Cell(fill=hot_water, region=+clad_or)
univ = openmc.Universe(name='Fuel Pin')
univ.add_cells([fuel_cell, clad_cell, hot_water_cell])
return univ
def guide_tube_pin():
"""Returns a control rod guide tube universe."""
gt_inner_cell = openmc.Cell(fill=hot_water, region=-fuel_or)
gt_clad_cell = openmc.Cell(fill=clad, region=+fuel_or & -clad_or)
gt_outer_cell = openmc.Cell(fill=hot_water, region=+clad_or)
univ = openmc.Universe(name='Guide Tube')
univ.add_cells([gt_inner_cell, gt_clad_cell, gt_outer_cell])
return univ
def assembly_model():
"""Returns a single PWR fuel assembly."""
model = openmc.model.Model()
# Create fuel assembly Lattice
pitch = 21.42
assembly = openmc.RectLattice(name='Fuel Assembly')
assembly.pitch = (pitch/17, pitch/17)
assembly.lower_left = (-pitch/2, -pitch/2)
# Create array indices for guide tube locations in lattice
gt_pos = np.array([
[2, 5], [2, 8], [2, 11],
[3, 3], [3, 13],
[5, 2], [5, 5], [5, 8], [5, 11], [5, 14],
[8, 2], [8, 5], [8, 8], [8, 11], [8, 14],
[11, 2], [11, 5], [11, 8], [11, 11], [11, 14],
[13, 3], [13, 13],
[14, 5], [14, 8], [14, 11]
])
# Create 17x17 array of universes. First we create a 17x17 array all filled
# with the fuel pin universe. Then, we replace the guide tube positions with
# the guide tube pin universe (note the use of numpy fancy indexing to
# achieve this).
assembly.universes = np.full((17, 17), fuel_pin())
assembly.universes[gt_pos[:, 0], gt_pos[:, 1]] = guide_tube_pin()
# Create outer boundary of the geometry to surround the lattice
outer_boundary = openmc.model.rectangular_prism(
pitch, pitch, boundary_type='reflective')
# Create a cell filled with the lattice
main_cell = openmc.Cell(fill=assembly, region=outer_boundary)
# Finally, create geometry by providing a list of cells that fill the root
# universe
model.geometry = openmc.Geometry([main_cell])
model.settings.batches = 150
model.settings.inactive = 50
model.settings.particles = 1000
model.settings.source = openmc.Source(space=openmc.stats.Box(
(-pitch/2, -pitch/2, -1),
(pitch/2, pitch/2, 1),
only_fissionable=True
))
# NOTE: We never actually created a Materials object. When you export/run
# using the Model object, if no materials were assigned it will look through
# the Geometry object and automatically export any materials that are
# necessary to build the model.
return model
if __name__ == '__main__':
# Set up command-line arguments for generating/running the model
parser = argparse.ArgumentParser()
parser.add_argument('--generate', action='store_true')
parser.add_argument('--run', action='store_true')
args = parser.parse_args()
if not args.generate and not args.run:
parser.print_help()
if args.generate or args.run:
model = assembly_model()
if args.generate:
model.export_to_xml()
if args.run:
model.run()