-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy patheval.py
executable file
·381 lines (319 loc) · 15.3 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: speedinghzl02
## updated by: RainbowSecret
## Microsoft Research
## Copyright (c) 2018
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
import matplotlib
matplotlib.use('Agg')
import argparse
import scipy
from scipy import ndimage
import torch, cv2
import numpy as np
import numpy.ma as ma
import sys
import pdb
import torch
from torch.autograd import Variable
import torchvision.models as models
import torch.nn.functional as F
from torch.utils import data
from dataset import get_segmentation_dataset
from network import get_segmentation_model
from config import Parameters
from collections import OrderedDict
import os
import scipy.ndimage as nd
from math import ceil
from PIL import Image as PILImage
import matplotlib.pyplot as plt
import torch.nn as nn
torch_ver = torch.__version__[:3]
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
palette = [0] * (num_cls * 3)
palette[0:3] = (128, 64, 128) # 0: 'road'
palette[3:6] = (244, 35,232) # 1 'sidewalk'
palette[6:9] = (70, 70, 70) # 2''building'
palette[9:12] = (102,102,156) # 3 wall
palette[12:15] = (190,153,153) # 4 fence
palette[15:18] = (153,153,153) # 5 pole
palette[18:21] = (250,170, 30) # 6 'traffic light'
palette[21:24] = (220,220, 0) # 7 'traffic sign'
palette[24:27] = (107,142, 35) # 8 'vegetation'
palette[27:30] = (152,251,152) # 9 'terrain'
palette[30:33] = ( 70,130,180) # 10 sky
palette[33:36] = (220, 20, 60) # 11 person
palette[36:39] = (255, 0, 0) # 12 rider
palette[39:42] = (0, 0, 142) # 13 car
palette[42:45] = (0, 0, 70) # 14 truck
palette[45:48] = (0, 60,100) # 15 bus
palette[48:51] = (0, 80,100) # 16 train
palette[51:54] = (0, 0,230) # 17 'motorcycle'
palette[54:57] = (119, 11, 32) # 18 'bicycle'
palette[57:60] = (105, 105, 105)
return palette
def pad_image(img, target_size):
"""Pad an image up to the target size."""
rows_missing = target_size[0] - img.shape[2]
cols_missing = target_size[1] - img.shape[3]
padded_img = np.pad(img, ((0, 0), (0, 0), (0, rows_missing), (0, cols_missing)), 'constant')
return padded_img
def predict_sliding(net, image, tile_size, classes, method, scale=1):
if scale != 1:
scaled_img = ndimage.zoom(image, (1.0, 1.0, scale, scale), order=1, prefilter=False)
else:
scaled_img = image
N_, C_, H_, W_ = scaled_img.shape
# if torch_ver == '0.4':
# interp = nn.Upsample(size=tile_size, mode='bilinear', align_corners=True)
# else:
# interp = nn.Upsample(size=tile_size, mode='bilinear')
full_probs = np.zeros((N_, H_, W_, classes))
count_predictions = np.zeros((N_, H_, W_, classes))
overlap = 0
stride_h = ceil(tile_size[0] * (1 - overlap))
stride_w = ceil(tile_size[1] * (1 - overlap))
tile_rows = int(ceil((H_ - tile_size[0]) / stride_h) + 1) # strided convolution formula
tile_cols = int(ceil((W_ - tile_size[1]) / stride_w) + 1)
print("Need %i x %i prediction tiles @ stride %i px, %i py" % (tile_cols, tile_rows, stride_h, stride_w))
tile_counter = 0
for row in range(tile_rows):
for col in range(tile_cols):
x1 = int(col * stride_w)
y1 = int(row * stride_h)
x2 = min(x1 + tile_size[1], W_)
y2 = min(y1 + tile_size[0], H_)
x1 = max(int(x2 - tile_size[1]), 0) # for portrait images the x1 underflows sometimes
y1 = max(int(y2 - tile_size[0]), 0) # for very few rows y1 underflows
img = scaled_img[:, :, y1:y2, x1:x2]
padded_img = pad_image(img, tile_size)
tile_counter += 1
print("Predicting tile %i" % tile_counter)
padded_prediction_ = net(Variable(torch.from_numpy(padded_img), volatile=True).cuda(), )
if 'dsn' in method or 'center' in method:
padded_prediction = padded_prediction_[-1]
else:
padded_prediction = padded_prediction_
# pdb.set_trace()
# padded_prediction = nn.functional.softmax(padded_prediction, dim=1)
padded_prediction = F.upsample(input=padded_prediction, size=tile_size, mode='bilinear', align_corners=True)
padded_prediction = padded_prediction.cpu().data.numpy().transpose(0,2,3,1)
prediction = padded_prediction[:, 0:img.shape[2], 0:img.shape[3], :]
count_predictions[:, y1:y2, x1:x2] += 1
full_probs[:, y1:y2, x1:x2] += prediction
full_probs /= count_predictions
full_probs = ndimage.zoom(full_probs, (1., 1./scale, 1./scale, 1.),
order=1, prefilter=False)
return full_probs
def predict_whole_img(net, image, classes, method, scale):
"""
Predict the whole image w/o using multiple crops.
The scale specify whether rescale the input image before predicting the results.
"""
N_, C_, H_, W_ = image.shape
if torch_ver == '0.4':
interp = nn.Upsample(size=(H_, W_), mode='bilinear', align_corners=True)
else:
interp = nn.Upsample(size=(H_, W_), mode='bilinear')
if scale != 1:
scaled_img = ndimage.zoom(image, (1.0, 1.0, scale, scale), order=1, prefilter=False)
else:
scaled_img = image
full_prediction_ = net(Variable(torch.from_numpy(scaled_img), volatile=True).cuda(), )
if 'dsn' in method or 'center' in method or 'fuse' in method:
full_prediction = full_prediction_[-1]
else:
full_prediction = full_prediction_
if torch_ver == '0.4':
full_prediction = F.upsample(input=full_prediction, size=(H_, W_), mode='bilinear', align_corners=True)
else:
full_prediction = F.upsample(input=full_prediction, size=(H_, W_), mode='bilinear')
result = full_prediction.cpu().data.numpy().transpose(0,2,3,1)
return result
def predict_whole_img_w_label(net, image, classes, method, scale, label):
"""
Predict the whole image w/o using multiple crops.
The scale specify whether rescale the input image before predicting the results.
"""
N_, C_, H_, W_ = image.shape
if torch_ver == '0.4':
interp = nn.Upsample(size=(H_, W_), mode='bilinear', align_corners=True)
else:
interp = nn.Upsample(size=(H_, W_), mode='bilinear')
# bug
# if scale > 1:
# scaled_img = ndimage.zoom(image, (1.0, 1.0, scale, scale), order=1, prefilter=False)
# else:
# scaled_img = image
scaled_img = ndimage.zoom(image, (1.0, 1.0, scale, scale), order=1, prefilter=False)
full_prediction_ = net(Variable(torch.from_numpy(scaled_img), volatile=True).cuda(), label)
if 'dsn' in method or 'center' in method or 'fuse' in method:
full_prediction = full_prediction_[-1]
else:
full_prediction = full_prediction_
full_prediction = F.upsample(input=full_prediction, size=(H_, W_), mode='bilinear', align_corners=True)
result = full_prediction.cpu().data.numpy().transpose(0,2,3,1)
return result
def predict_multi_scale(net, image, scales, tile_size, classes, flip_evaluation, method):
"""
Predict an image by looking at it with different scales.
We choose the "predict_whole_img" for the image with less than the original input size,
for the input of larger size, we would choose the cropping method to ensure that GPU memory is enough.
"""
N_, C_, H_, W_ = image.shape
full_probs = np.zeros((N_, H_, W_, classes))
for scale in scales:
scale = float(scale)
print("Predicting image scaled by %f" % scale)
sys.stdout.flush()
if scale <= 1.0:
scaled_probs = predict_whole_img(net, image, classes, method, scale=scale)
else:
scaled_probs = predict_sliding(net, image, (1024,2048), classes, method, scale=scale)
if flip_evaluation == 'True':
if scale <= 1.0:
flip_scaled_probs = predict_whole_img(net, image[:,:,:,::-1].copy(), classes, method, scale=scale)
else:
flip_scaled_probs = predict_sliding(net, image[:,:,:,::-1].copy(), (1024,2048), classes, method, scale=scale)
scaled_probs = 0.5 * (scaled_probs + flip_scaled_probs[:,:,::-1])
full_probs += scaled_probs
full_probs /= len(scales)
return full_probs
def get_confusion_matrix(gt_label, pred_label, class_num):
"""
Calcute the confusion matrix by given label and pred
:param gt_label: the ground truth label
:param pred_label: the pred label
:param class_num: the nunber of class
:return: the confusion matrix
"""
index = (gt_label * class_num + pred_label).astype('int32')
label_count = np.bincount(index)
confusion_matrix = np.zeros((class_num, class_num))
for i_label in range(class_num):
for i_pred_label in range(class_num):
cur_index = i_label * class_num + i_pred_label
if cur_index < len(label_count):
confusion_matrix[i_label, i_pred_label] = label_count[cur_index]
return confusion_matrix
def id2trainId(label, id_to_trainid, reverse=False):
label_copy = label.copy()
if reverse:
for v, k in id_to_trainid.items():
label_copy[label == k] = v
else:
for k, v in id_to_trainid.items():
label_copy[label == k] = v
return label_copy
def main():
"""Create the model and start the evaluation process."""
args = Parameters().parse()
# file_log = open(args.log_file, "w")
# sys.stdout = sys.stderr = file_log
print("Input arguments:")
sys.stdout.flush()
for key, val in vars(args).items():
print("{:16} {}".format(key, val))
h, w = map(int, args.input_size.split(','))
input_size = (h, w)
output_path = args.output_path
if not os.path.exists(output_path):
os.makedirs(output_path)
deeplab = get_segmentation_model("_".join([args.network, args.method]), num_classes=args.num_classes)
ignore_label = 255
id_to_trainid = {-1: ignore_label, 0: ignore_label, 1: ignore_label, 2: ignore_label,
3: ignore_label, 4: ignore_label, 5: ignore_label, 6: ignore_label,
7: 0, 8: 1, 9: ignore_label, 10: ignore_label, 11: 2, 12: 3, 13: 4,
14: ignore_label, 15: ignore_label, 16: ignore_label, 17: 5,
18: ignore_label, 19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12, 26: 13, 27: 14,
28: 15, 29: ignore_label, 30: ignore_label, 31: 16, 32: 17, 33: 18}
os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu
saved_state_dict = torch.load(args.restore_from)
deeplab.load_state_dict(saved_state_dict)
model = nn.DataParallel(deeplab)
model.eval()
model.cuda()
testloader = data.DataLoader(get_segmentation_dataset(args.dataset, root=args.data_dir, list_path=args.data_list,
crop_size=(1024, 2048), scale=False, mirror=False, network=args.network),
batch_size=args.batch_size, shuffle=False, pin_memory=True)
data_list = []
confusion_matrix = np.zeros((args.num_classes,args.num_classes))
palette = get_palette(20)
image_id = 0
for index, batch in enumerate(testloader):
if index % 100 == 0:
print('%d processd'%(index))
sys.stdout.flush()
image, label, size, name = batch
size = size[0].numpy()
if torch_ver == '0.3':
if args.use_ms == 'True':
output = predict_multi_scale(model, image.numpy(), ([0.75, 1, 1.25]), input_size,
args.num_classes, args.use_flip, args.method)
else:
if args.use_flip == 'True':
output = predict_multi_scale(model, image.numpy(), ([args.whole_scale]), input_size,
args.num_classes, args.use_flip, args.method)
else:
if 'gt' in args.method:
label = Variable(label.long().cuda())
output = predict_whole_img_w_label(model, image.numpy(), args.num_classes,
args.method, scale=float(args.whole_scale), label=label)
else:
output = predict_whole_img(model, image.numpy(), args.num_classes,
args.method, scale=float(args.whole_scale))
else:
with torch.no_grad():
if args.use_ms == 'True':
output = predict_multi_scale(model, image.numpy(), ([0.75, 1, 1.25]), input_size,
args.num_classes, args.use_flip, args.method)
else:
if args.use_flip == 'True':
output = predict_multi_scale(model, image.numpy(), ([args.whole_scale]), input_size,
args.num_classes, args.use_flip, args.method)
else:
if 'gt' in args.method:
output = predict_whole_img_w_label(model, image.numpy(), args.num_classes,
args.method, scale=float(args.whole_scale), label=Variable(label.long().cuda()))
else:
output = predict_whole_img(model, image.numpy(), args.num_classes,
args.method, scale=float(args.whole_scale))
seg_pred = np.asarray(np.argmax(output, axis=3), dtype=np.uint8)
m_seg_pred = ma.masked_array(seg_pred, mask=torch.eq(label, 255))
ma.set_fill_value(m_seg_pred, 20)
seg_pred = m_seg_pred
for i in range(image.size(0)):
image_id += 1
print('%d th segmentation map generated ...'%(image_id))
sys.stdout.flush()
if args.store_output == 'True':
output_im = PILImage.fromarray(seg_pred[i])
output_im.putpalette(palette)
output_im.save(output_path+'/'+name[i]+'.png')
seg_gt = np.asarray(label.numpy()[:,:size[0],:size[1]], dtype=np.int)
ignore_index = seg_gt != 255
seg_gt = seg_gt[ignore_index]
seg_pred = seg_pred[ignore_index]
confusion_matrix += get_confusion_matrix(seg_gt, seg_pred, args.num_classes)
pos = confusion_matrix.sum(1)
res = confusion_matrix.sum(0)
tp = np.diag(confusion_matrix)
IU_array = (tp / np.maximum(1.0, pos + res - tp))
mean_IU = IU_array.mean()
print({'meanIU':mean_IU, 'IU_array':IU_array})
print("confusion matrix\n")
print(confusion_matrix)
sys.stdout.flush()
if __name__ == '__main__':
main()