|
| 1 | +package rankedset |
| 2 | + |
| 3 | +import "github.com/google/btree" |
| 4 | + |
| 5 | +// Item represents a single object in a RankedSet. |
| 6 | +type Item interface { |
| 7 | + // Key returns the unique identifier for this item. |
| 8 | + Key() string |
| 9 | + // Rank is used to sort items. |
| 10 | + // Items with the same rank are sorted lexicographically based on Key. |
| 11 | + Rank() int64 |
| 12 | +} |
| 13 | + |
| 14 | +// RankedSet stores Items based on Key (uniqueness) and Rank (sorting). |
| 15 | +type RankedSet struct { |
| 16 | + rank *btree.BTree |
| 17 | + set map[string]*treeItem |
| 18 | +} |
| 19 | + |
| 20 | +// StringItem implements Item using a string. |
| 21 | +// It has two main uses: |
| 22 | +// 1. If all items in a RankedSet are StringItems, the set becomes a store of unique strings sorted lexicographically. |
| 23 | +// 2. It serves as a Key item that can be passed into methods that ignore Rank such as RankedSet.Delete. |
| 24 | +type StringItem string |
| 25 | + |
| 26 | +func (s StringItem) Key() string { |
| 27 | + return string(s) |
| 28 | +} |
| 29 | + |
| 30 | +func (s StringItem) Rank() int64 { |
| 31 | + return 0 |
| 32 | +} |
| 33 | + |
| 34 | +func New() *RankedSet { |
| 35 | + return &RankedSet{ |
| 36 | + rank: btree.New(32), |
| 37 | + set: make(map[string]*treeItem), |
| 38 | + } |
| 39 | +} |
| 40 | + |
| 41 | +// Insert adds the item into the set. |
| 42 | +// If an item with the same Key existed in the set, it is deleted and returned. |
| 43 | +func (s *RankedSet) Insert(item Item) Item { |
| 44 | + old := s.Delete(item) |
| 45 | + |
| 46 | + key := item.Key() |
| 47 | + value := &treeItem{item: item} |
| 48 | + |
| 49 | + s.rank.ReplaceOrInsert(value) // should always return nil because we call Delete first |
| 50 | + s.set[key] = value |
| 51 | + |
| 52 | + return old |
| 53 | +} |
| 54 | + |
| 55 | +// Delete removes the item from the set based on Key (Rank is ignored). |
| 56 | +// The removed item is returned if it existed in the set. |
| 57 | +func (s *RankedSet) Delete(item Item) Item { |
| 58 | + key := item.Key() |
| 59 | + value, ok := s.set[key] |
| 60 | + if !ok { |
| 61 | + return nil |
| 62 | + } |
| 63 | + |
| 64 | + s.rank.Delete(value) // should always return the same data as value (non-nil) |
| 65 | + delete(s.set, key) |
| 66 | + |
| 67 | + return value.item |
| 68 | +} |
| 69 | + |
| 70 | +func (s *RankedSet) Min() Item { |
| 71 | + if min := s.rank.Min(); min != nil { |
| 72 | + return min.(*treeItem).item |
| 73 | + } |
| 74 | + return nil |
| 75 | +} |
| 76 | + |
| 77 | +func (s *RankedSet) Max() Item { |
| 78 | + if max := s.rank.Max(); max != nil { |
| 79 | + return max.(*treeItem).item |
| 80 | + } |
| 81 | + return nil |
| 82 | +} |
| 83 | + |
| 84 | +func (s *RankedSet) Len() int { |
| 85 | + return len(s.set) |
| 86 | +} |
| 87 | + |
| 88 | +func (s *RankedSet) Get(item Item) Item { |
| 89 | + if value, ok := s.set[item.Key()]; ok { |
| 90 | + return value.item |
| 91 | + } |
| 92 | + return nil |
| 93 | +} |
| 94 | + |
| 95 | +func (s *RankedSet) Has(item Item) bool { |
| 96 | + _, ok := s.set[item.Key()] |
| 97 | + return ok |
| 98 | +} |
| 99 | + |
| 100 | +// List returns all items in the set in ranked order. |
| 101 | +// If delete is set to true, the returned items are removed from the set. |
| 102 | +func (s *RankedSet) List(delete bool) []Item { |
| 103 | + return s.ascend( |
| 104 | + func(item Item) bool { |
| 105 | + return true |
| 106 | + }, |
| 107 | + delete, |
| 108 | + ) |
| 109 | +} |
| 110 | + |
| 111 | +// LessThan returns all items less than the given rank in ranked order. |
| 112 | +// If delete is set to true, the returned items are removed from the set. |
| 113 | +func (s *RankedSet) LessThan(rank int64, delete bool) []Item { |
| 114 | + return s.ascend( |
| 115 | + func(item Item) bool { |
| 116 | + return item.Rank() < rank |
| 117 | + }, |
| 118 | + delete, |
| 119 | + ) |
| 120 | +} |
| 121 | + |
| 122 | +// setItemIterator allows callers of ascend to iterate in-order over the set. |
| 123 | +// When this function returns false, iteration will stop. |
| 124 | +type setItemIterator func(item Item) bool |
| 125 | + |
| 126 | +func (s *RankedSet) ascend(iterator setItemIterator, delete bool) []Item { |
| 127 | + var items []Item |
| 128 | + s.rank.Ascend(func(i btree.Item) bool { |
| 129 | + item := i.(*treeItem).item |
| 130 | + if !iterator(item) { |
| 131 | + return false |
| 132 | + } |
| 133 | + items = append(items, item) |
| 134 | + return true |
| 135 | + }) |
| 136 | + // delete after Ascend since it is probably not safe to remove while iterating |
| 137 | + if delete { |
| 138 | + for _, item := range items { |
| 139 | + s.Delete(item) |
| 140 | + } |
| 141 | + } |
| 142 | + return items |
| 143 | +} |
| 144 | + |
| 145 | +var _ btree.Item = &treeItem{} |
| 146 | + |
| 147 | +type treeItem struct { |
| 148 | + item Item |
| 149 | +} |
| 150 | + |
| 151 | +func (i *treeItem) Less(than btree.Item) bool { |
| 152 | + other := than.(*treeItem).item |
| 153 | + |
| 154 | + selfRank := i.item.Rank() |
| 155 | + otherRank := other.Rank() |
| 156 | + |
| 157 | + if selfRank == otherRank { |
| 158 | + return i.item.Key() < other.Key() |
| 159 | + } |
| 160 | + |
| 161 | + return selfRank < otherRank |
| 162 | +} |
0 commit comments