These are the changes in pandas 2.1.0. See :ref:`release` for a full changelog including other versions of pandas.
{{ header }}
- :meth:`Series.transform` not respecting Copy-on-Write when
func
modifies :class:`Series` inplace (:issue:`53747`) - Calling :meth:`Index.values` will now return a read-only NumPy array (:issue:`53704`)
- Setting a :class:`Series` into a :class:`DataFrame` now creates a lazy instead of a deep copy (:issue:`53142`)
- The :class:`DataFrame` constructor, when constructing a DataFrame from a dictionary
of Index objects and specifying
copy=False
, will now use a lazy copy of those Index objects for the columns of the DataFrame (:issue:`52947`)
When given a callable, :meth:`Series.map` applies the callable to all elements of the :class:`Series`. Similarly, :meth:`DataFrame.map` applies the callable to all elements of the :class:`DataFrame`, while :meth:`Index.map` applies the callable to all elements of the :class:`Index`.
Frequently, it is not desirable to apply the callable to nan-like values of the array and to avoid doing
that, the map
method could be called with na_action="ignore"
, i.e. ser.map(func, na_action="ignore")
.
However, na_action="ignore"
was not implemented for many ExtensionArray
and Index
types
and na_action="ignore"
did not work correctly for any ExtensionArray
subclass except the nullable numeric ones (i.e. with dtype :class:`Int64` etc.).
na_action="ignore"
now works for all array types (:issue:`52219`, :issue:`51645`, :issue:`51809`, :issue:`51936`, :issue:`52033`; :issue:`52096`).
Previous behavior:
In [1]: ser = pd.Series(["a", "b", np.nan], dtype="category")
In [2]: ser.map(str.upper, na_action="ignore")
NotImplementedError
In [3]: df = pd.DataFrame(ser)
In [4]: df.applymap(str.upper, na_action="ignore") # worked for DataFrame
0
0 A
1 B
2 NaN
In [5]: idx = pd.Index(ser)
In [6]: idx.map(str.upper, na_action="ignore")
TypeError: CategoricalIndex.map() got an unexpected keyword argument 'na_action'
New behavior:
.. ipython:: python ser = pd.Series(["a", "b", np.nan], dtype="category") ser.map(str.upper, na_action="ignore") df = pd.DataFrame(ser) df.map(str.upper, na_action="ignore") idx = pd.Index(ser) idx.map(str.upper, na_action="ignore")
Notice also that in this version, :meth:`DataFrame.map` been added and :meth:`DataFrame.applymap` has been deprecated. :meth:`DataFrame.map` has the same functionality as :meth:`DataFrame.applymap`, but the new name better communicate that this is the :class:`DataFrame` version of :meth:`Series.map` (:issue:`52353`).
Also, note that :meth:`Categorical.map` implicitly has had its na_action
set to "ignore"
by default.
This has been deprecated and will :meth:`Categorical.map` in the future change the default
to na_action=None
, like for all the other array types.
- :meth:`Categorical.map` and :meth:`CategoricalIndex.map` now have a
na_action
parameter. :meth:`Categorical.map` implicitly had a default value of"ignore"
forna_action
. This has formally been deprecated and will be changed toNone
in the future. Also notice that :meth:`Series.map` has defaultna_action=None
and calls to series with categorical data will now usena_action=None
unless explicitly set otherwise (:issue:`44279`) - :class:`api.extensions.ExtensionArray` now has a :meth:`~api.extensions.ExtensionArray.map` method (:issue:`51809`)
- :meth:`DataFrame.applymap` now uses the :meth:`~api.extensions.ExtensionArray.map` method of underlying :class:`api.extensions.ExtensionArray` instances (:issue:`52219`)
- :meth:`MultiIndex.sort_values` now supports
na_position
(:issue:`51612`) - :meth:`MultiIndex.sortlevel` and :meth:`Index.sortlevel` gained a new keyword
na_position
(:issue:`51612`) - :meth:`arrays.DatetimeArray.map`, :meth:`arrays.TimedeltaArray.map` and :meth:`arrays.PeriodArray.map` can now take a
na_action
argument (:issue:`51644`) - :meth:`arrays.SparseArray.map` now supports
na_action
(:issue:`52096`). - Add :meth:`diff()` and :meth:`round()` for :class:`Index` (:issue:`19708`)
- Add dtype of categories to
repr
information of :class:`CategoricalDtype` (:issue:`52179`) - Added to the escape mode "latex-math" preserving without escaping all characters between "(" and ")" in formatter (:issue:`51903`)
- Adding
engine_kwargs
parameter to :meth:`DataFrame.read_excel` (:issue:`52214`) - Classes that are useful for type-hinting have been added to the public API in the new submodule
pandas.api.typing
(:issue:`48577`) - Implemented :attr:`Series.dt.is_month_start`, :attr:`Series.dt.is_month_end`, :attr:`Series.dt.is_year_start`, :attr:`Series.dt.is_year_end`, :attr:`Series.dt.is_quarter_start`, :attr:`Series.dt.is_quarter_end`, :attr:`Series.dt.is_days_in_month`, :attr:`Series.dt.unit`, :meth:`Series.dt.is_normalize`, :meth:`Series.dt.day_name`, :meth:`Series.dt.month_name`, :meth:`Series.dt.tz_convert` for :class:`ArrowDtype` with
pyarrow.timestamp
(:issue:`52388`, :issue:`51718`) - Implemented
__from_arrow__
on :class:`DatetimeTZDtype`. (:issue:`52201`) - Implemented
__pandas_priority__
to allow custom types to take precedence over :class:`DataFrame`, :class:`Series`, :class:`Index`, or :class:`ExtensionArray` for arithmetic operations, :ref:`see the developer guide <extending.pandas_priority>` (:issue:`48347`) - Improve error message when having incompatible columns using :meth:`DataFrame.merge` (:issue:`51861`)
- Improve error message when setting :class:`DataFrame` with wrong number of columns through :meth:`DataFrame.isetitem` (:issue:`51701`)
- Improved error handling when using :meth:`DataFrame.to_json` with incompatible
index
andorient
arguments (:issue:`52143`) - Improved error message when creating a DataFrame with empty data (0 rows), no index and an incorrect number of columns. (:issue:`52084`)
- Let :meth:`DataFrame.to_feather` accept a non-default :class:`Index` and non-string column names (:issue:`51787`)
- Performance improvement in :func:`read_csv` (:issue:`52632`) with
engine="c"
- :meth:`Categorical.from_codes` has gotten a
validate
parameter (:issue:`50975`) - :meth:`DataFrame.stack` gained the
sort
keyword to dictate whether the resulting :class:`MultiIndex` levels are sorted (:issue:`15105`) - :meth:`DataFrame.unstack` gained the
sort
keyword to dictate whether the resulting :class:`MultiIndex` levels are sorted (:issue:`15105`) - :meth:`DataFrameGroupby.agg` and :meth:`DataFrameGroupby.transform` now support grouping by multiple keys when the index is not a :class:`MultiIndex` for
engine="numba"
(:issue:`53486`) - :meth:`Series.explode` now supports pyarrow-backed list types (:issue:`53602`)
- :meth:`Series.str.join` now supports
ArrowDtype(pa.string())
(:issue:`53646`) - :meth:`SeriesGroupby.agg` and :meth:`DataFrameGroupby.agg` now support passing in multiple functions for
engine="numba"
(:issue:`53486`) - :meth:`SeriesGroupby.transform` and :meth:`DataFrameGroupby.transform` now support passing in a string as the function for
engine="numba"
(:issue:`53579`) - Added
engine_kwargs
parameter to :meth:`DataFrame.to_excel` (:issue:`53220`) - Added a new parameter
by_row
to :meth:`Series.apply`. When set toFalse
the supplied callables will always operate on the whole Series (:issue:`53400`). - Groupby aggregations (such as :meth:`DataFrameGroupby.sum`) now can preserve the dtype of the input instead of casting to
float64
(:issue:`44952`) - Improved error message when :meth:`DataFrameGroupBy.agg` failed (:issue:`52930`)
- Many read/to_* functions, such as :meth:`DataFrame.to_pickle` and :func:`read_csv`, support forwarding compression arguments to lzma.LZMAFile (:issue:`52979`)
- Performance improvement in :func:`concat` with homogeneous
np.float64
ornp.float32
dtypes (:issue:`52685`) - Performance improvement in :meth:`DataFrame.filter` when
items
is given (:issue:`52941`)
These are bug fixes that might have notable behavior changes.
pandas 2.1.0 supports Python 3.9 and higher.
Some minimum supported versions of dependencies were updated. If installed, we now require:
Package | Minimum Version | Required | Changed |
---|---|---|---|
numpy | 1.21.6 | X | X |
mypy (dev) | 1.2 | X | |
beautifulsoup4 | 4.11.1 | X | |
bottleneck | 1.3.4 | X | |
fastparquet | 0.8.1 | X | |
fsspec | 2022.05.0 | X | |
hypothesis | 6.46.1 | X | |
gcsfs | 2022.05.0 | X | |
jinja2 | 3.1.2 | X | |
lxml | 4.8.0 | X | |
numba | 0.55.2 | X | |
numexpr | 2.8.0 | X | |
openpyxl | 3.0.10 | X | |
pandas-gbq | 0.17.5 | X | |
psycopg2 | 2.9.3 | X | |
pyreadstat | 1.1.5 | X | |
pyqt5 | 5.15.6 | X | |
pytables | 3.7.0 | X | |
pytest | 7.3.2 | X | |
python-snappy | 0.6.1 | X | |
pyxlsb | 1.0.9 | X | |
s3fs | 2022.05.0 | X | |
scipy | 1.8.1 | X | |
sqlalchemy | 1.4.36 | X | |
tabulate | 0.8.10 | X | |
xarray | 2022.03.0 | X | |
xlsxwriter | 3.0.3 | X | |
zstandard | 0.17.0 | X |
For optional libraries the general recommendation is to use the latest version. The following table lists the lowest version per library that is currently being tested throughout the development of pandas. Optional libraries below the lowest tested version may still work, but are not considered supported.
Package | Minimum Version | Changed |
---|---|---|
X |
See :ref:`install.dependencies` and :ref:`install.optional_dependencies` for more.
- Deprecated 'broadcast_axis' keyword in :meth:`Series.align` and :meth:`DataFrame.align`, upcast before calling
align
withleft = DataFrame({col: left for col in right.columns}, index=right.index)
(:issue:`51856`) - Deprecated 'fill_method' and 'limit' keywords in :meth:`DataFrame.pct_change`, :meth:`Series.pct_change`, :meth:`DataFrameGroupBy.pct_change`, and :meth:`SeriesGroupBy.pct_change`, explicitly call
ffill
orbfill
before callingpct_change
instead (:issue:`53491`) - Deprecated 'method', 'limit', and 'fill_axis' keywords in :meth:`DataFrame.align` and :meth:`Series.align`, explicitly call
fillna
on the alignment results instead (:issue:`51856`) - Deprecated 'quantile' keyword in :meth:`Rolling.quantile` and :meth:`Expanding.quantile`, renamed as 'q' instead (:issue:`52550`)
- Deprecated :meth:`.DataFrameGroupBy.apply` and methods on the objects returned by :meth:`.DataFrameGroupBy.resample` operating on the grouping column(s); select the columns to operate on after groupby to either explicitly include or exclude the groupings and avoid the
FutureWarning
(:issue:`7155`) - Deprecated :meth:`.Groupby.all` and :meth:`.GroupBy.any` with datetime64 or :class:`PeriodDtype` values, matching the :class:`Series` and :class:`DataFrame` deprecations (:issue:`34479`)
- Deprecated :meth:`Categorical.to_list`, use
obj.tolist()
instead (:issue:`51254`) - Deprecated :meth:`DataFrame._data` and :meth:`Series._data`, use public APIs instead (:issue:`33333`)
- Deprecated :meth:`DataFrameGroupBy.dtypes`, check
dtypes
on the underlying object instead (:issue:`51045`) - Deprecated
axis=1
in :meth:`DataFrame.ewm`, :meth:`DataFrame.rolling`, :meth:`DataFrame.expanding`, transpose before calling the method instead (:issue:`51778`) - Deprecated
axis=1
in :meth:`DataFrame.groupby` and in :class:`Grouper` constructor, doframe.T.groupby(...)
instead (:issue:`51203`) - Deprecated accepting slices in :meth:`DataFrame.take`, call
obj[slicer]
or pass a sequence of integers instead (:issue:`51539`) - Deprecated explicit support for subclassing :class:`Index` (:issue:`45289`)
- Deprecated making functions given to :meth:`Series.agg` attempt to operate on each element in the :class:`Series` and only operate on the whole :class:`Series` if the elementwise operations failed. In the future, functions given to :meth:`Series.agg` will always operate on the whole :class:`Series` only. To keep the current behavior, use :meth:`Series.transform` instead. (:issue:`53325`)
- Deprecated making the functions in a list of functions given to :meth:`DataFrame.agg` attempt to operate on each element in the :class:`DataFrame` and only operate on the columns of the :class:`DataFrame` if the elementwise operations failed. To keep the current behavior, use :meth:`DataFrame.transform` instead. (:issue:`53325`)
- Deprecated passing a :class:`DataFrame` to :meth:`DataFrame.from_records`, use :meth:`DataFrame.set_index` or :meth:`DataFrame.drop` instead (:issue:`51353`)
- Deprecated silently dropping unrecognized timezones when parsing strings to datetimes (:issue:`18702`)
- Deprecated the
axis
keyword in :meth:`DataFrame.ewm`, :meth:`Series.ewm`, :meth:`DataFrame.rolling`, :meth:`Series.rolling`, :meth:`DataFrame.expanding`, :meth:`Series.expanding` (:issue:`51778`) - Deprecated the
axis
keyword in :meth:`DataFrame.resample`, :meth:`Series.resample` (:issue:`51778`) - Deprecated the behavior of :func:`concat` with both
len(keys) != len(objs)
, in a future version this will raise instead of truncating to the shorter of the two sequences (:issue:`43485`) - Deprecated the default of
observed=False
in :meth:`DataFrame.groupby` and :meth:`Series.groupby`; this will default toTrue
in a future version (:issue:`43999`) - Deprecating pinning
group.name
to each group in :meth:`SeriesGroupBy.aggregate` aggregations; if your operation requires utilizing the groupby keys, iterate over the groupby object instead (:issue:`41090`) - Deprecated the 'axis' keyword in :meth:`.GroupBy.idxmax`, :meth:`.GroupBy.idxmin`, :meth:`.GroupBy.fillna`, :meth:`.GroupBy.take`, :meth:`.GroupBy.skew`, :meth:`.GroupBy.rank`, :meth:`.GroupBy.cumprod`, :meth:`.GroupBy.cumsum`, :meth:`.GroupBy.cummax`, :meth:`.GroupBy.cummin`, :meth:`.GroupBy.pct_change`, :meth:`GroupBy.diff`, :meth:`.GroupBy.shift`, and :meth:`DataFrameGroupBy.corrwith`; for
axis=1
operate on the underlying :class:`DataFrame` instead (:issue:`50405`, :issue:`51046`) - Deprecated :class:`.DataFrameGroupBy` with
as_index=False
not including groupings in the result when they are not columns of the DataFrame (:issue:`49519`) - Deprecated :func:`is_categorical_dtype`, use
isinstance(obj.dtype, pd.CategoricalDtype)
instead (:issue:`52527`) - Deprecated :func:`is_datetime64tz_dtype`, check
isinstance(dtype, pd.DatetimeTZDtype)
instead (:issue:`52607`) - Deprecated :func:`is_int64_dtype`, check
dtype == np.dtype(np.int64)
instead (:issue:`52564`) - Deprecated :func:`is_interval_dtype`, check
isinstance(dtype, pd.IntervalDtype)
instead (:issue:`52607`) - Deprecated :func:`is_period_dtype`, check
isinstance(dtype, pd.PeriodDtype)
instead (:issue:`52642`) - Deprecated :func:`is_sparse`, check
isinstance(dtype, pd.SparseDtype)
instead (:issue:`52642`) - Deprecated :meth:`.Styler.applymap_index`. Use the new :meth:`.Styler.map_index` method instead (:issue:`52708`)
- Deprecated :meth:`.Styler.applymap`. Use the new :meth:`.Styler.map` method instead (:issue:`52708`)
- Deprecated :meth:`DataFrame.applymap`. Use the new :meth:`DataFrame.map` method instead (:issue:`52353`)
- Deprecated :meth:`DataFrame.swapaxes` and :meth:`Series.swapaxes`, use :meth:`DataFrame.transpose` or :meth:`Series.transpose` instead (:issue:`51946`)
- Deprecated
freq
parameter in :class:`PeriodArray` constructor, passdtype
instead (:issue:`52462`) - Deprecated allowing non-standard inputs in :func:`take`, pass either a
numpy.ndarray
, :class:`ExtensionArray`, :class:`Index`, or :class:`Series` (:issue:`52981`) - Deprecated allowing non-standard sequences for :func:`isin`, :func:`value_counts`, :func:`unique`, :func:`factorize`, case to one of
numpy.ndarray
, :class:`Index`, :class:`ExtensionArray`, or :class:`Series` before calling (:issue:`52986`) - Deprecated behavior of :class:`DataFrame` reductions
sum
,prod
,std
,var
,sem
withaxis=None
, in a future version this will operate over both axes returning a scalar instead of behaving likeaxis=0
; note this also affects numpy functions e.g.np.sum(df)
(:issue:`21597`) - Deprecated behavior of :func:`concat` when :class:`DataFrame` has columns that are all-NA, in a future version these will not be discarded when determining the resulting dtype (:issue:`40893`)
- Deprecated behavior of :meth:`Series.dt.to_pydatetime`, in a future version this will return a :class:`Series` containing python
datetime
objects instead of anndarray
of datetimes; this matches the behavior of other :meth:`Series.dt` properties (:issue:`20306`) - Deprecated logical operations (
|
,&
,^
) between pandas objects and dtype-less sequences (e.g.list
,tuple
), wrap a sequence in a :class:`Series` or numpy array before operating instead (:issue:`51521`) - Deprecated making :meth:`Series.apply` return a :class:`DataFrame` when the passed-in callable returns a :class:`Series` object. In the future this will return a :class:`Series` whose values are themselves :class:`Series`. This pattern was very slow and it's recommended to use alternative methods to archive the same goal (:issue:`52116`)
- Deprecated parameter
convert_type
in :meth:`Series.apply` (:issue:`52140`) - Deprecated passing a dictionary to :meth:`.SeriesGroupBy.agg`; pass a list of aggregations instead (:issue:`50684`)
- Deprecated the "fastpath" keyword in :class:`Categorical` constructor, use :meth:`Categorical.from_codes` instead (:issue:`20110`)
- Deprecated the behavior of :func:`is_bool_dtype` returning
True
for object-dtype :class:`Index` of bool objects (:issue:`52680`) - Deprecated the methods :meth:`Series.bool` and :meth:`DataFrame.bool` (:issue:`51749`)
- Deprecated unused "closed" and "normalize" keywords in the :class:`DatetimeIndex` constructor (:issue:`52628`)
- Deprecated unused "closed" keyword in the :class:`TimedeltaIndex` constructor (:issue:`52628`)
- Deprecated logical operation between two non boolean :class:`Series` with different indexes always coercing the result to bool dtype. In a future version, this will maintain the return type of the inputs. (:issue:`52500`, :issue:`52538`)
- Deprecated :func:`value_counts`, use
pd.Series(obj).value_counts()
instead (:issue:`47862`) - Deprecated :meth:`Series.first` and :meth:`DataFrame.first` (please create a mask and filter using
.loc
instead) (:issue:`45908`) - Deprecated :meth:`Series.interpolate` and :meth:`DataFrame.interpolate` for object-dtype (:issue:`53631`)
- Deprecated :meth:`Series.last` and :meth:`DataFrame.last` (please create a mask and filter using
.loc
instead) (:issue:`53692`) - Deprecated allowing
downcast
keyword other thanNone
,False
, "infer", or a dict with these as values in :meth:`Series.fillna`, :meth:`DataFrame.fillna` (:issue:`40988`) - Deprecated allowing arbitrary
fill_value
in :class:`SparseDtype`, in a future version thefill_value
will need to be compatible with thedtype.subtype
, either a scalar that can be held by that subtype orNaN
for integer or bool subtypes (:issue:`23124`) - Deprecated behavior of :func:`assert_series_equal` and :func:`assert_frame_equal` considering NA-like values (e.g.
NaN
vsNone
as equivalent) (:issue:`52081`) - Deprecated constructing :class:`SparseArray` from scalar data, pass a sequence instead (:issue:`53039`)
- Deprecated falling back to filling when
value
is not specified in :meth:`DataFrame.replace` and :meth:`Series.replace` with non-dict-liketo_replace
(:issue:`33302`) - Deprecated literal json input to :func:`read_json`. Wrap literal json string input in
io.StringIO
instead. (:issue:`53409`) - Deprecated literal string/bytes input to :func:`read_html`. Wrap literal string/bytes input in
io.StringIO
/io.BytesIO
instead. (:issue:`53767`) - Deprecated option "mode.use_inf_as_na", convert inf entries to
NaN
before instead (:issue:`51684`) - Deprecated parameter
obj
in :meth:`GroupBy.get_group` (:issue:`53545`) - Deprecated positional indexing on :class:`Series` with :meth:`Series.__getitem__` and :meth:`Series.__setitem__`, in a future version
ser[item]
will always interpretitem
as a label, not a position (:issue:`50617`) - Deprecated strings
T
,t
,L
andl
denoting units in :func:`to_timedelta` (:issue:`52536`) - Deprecated the "method" and "limit" keywords on :meth:`Series.fillna`, :meth:`DataFrame.fillna`, :meth:`SeriesGroupBy.fillna`, :meth:`DataFrameGroupBy.fillna`, and :meth:`Resampler.fillna`, use
obj.bfill()
orobj.ffill()
instead (:issue:`53394`) - Deprecated the
method
andlimit
keywords in :meth:`DataFrame.replace` and :meth:`Series.replace` (:issue:`33302`) - Deprecated values "pad", "ffill", "bfill", "backfill" for :meth:`Series.interpolate` and :meth:`DataFrame.interpolate`, use
obj.ffill()
orobj.bfill()
instead (:issue:`53581`)
- Performance improvement in :func:`factorize` for object columns not containing strings (:issue:`51921`)
- Performance improvement in :func:`read_orc` when reading a remote URI file path. (:issue:`51609`)
- Performance improvement in :func:`read_parquet` and :meth:`DataFrame.to_parquet` when reading a remote file with
engine="pyarrow"
(:issue:`51609`) - Performance improvement in :func:`read_parquet` on string columns when using
use_nullable_dtypes=True
(:issue:`47345`) - Performance improvement in :meth:`DataFrame.clip` and :meth:`Series.clip` (:issue:`51472`)
- Performance improvement in :meth:`DataFrame.first_valid_index` and :meth:`DataFrame.last_valid_index` for extension array dtypes (:issue:`51549`)
- Performance improvement in :meth:`DataFrame.where` when
cond
is backed by an extension dtype (:issue:`51574`) - Performance improvement in :meth:`MultiIndex.set_levels` and :meth:`MultiIndex.set_codes` when
verify_integrity=True
(:issue:`51873`) - Performance improvement in :meth:`MultiIndex.sortlevel` when
ascending
is a list (:issue:`51612`) - Performance improvement in :meth:`Series.combine_first` (:issue:`51777`)
- Performance improvement in :meth:`~arrays.ArrowExtensionArray.fillna` when array does not contain nulls (:issue:`51635`)
- Performance improvement in :meth:`~arrays.ArrowExtensionArray.isna` when array has zero nulls or is all nulls (:issue:`51630`)
- Performance improvement when parsing strings to
boolean[pyarrow]
dtype (:issue:`51730`) - Performance improvement when searching an :class:`Index` sliced from other indexes (:issue:`51738`)
- Performance improvement in :func:`concat` (:issue:`52291`, :issue:`52290`)
- :class:`Period`'s default formatter (period_format) is now significantly (~twice) faster. This improves performance of
str(Period)
,repr(Period)
, and :meth:`Period.strftime(fmt=None)`, as well asPeriodArray.strftime(fmt=None)
,PeriodIndex.strftime(fmt=None)
andPeriodIndex.format(fmt=None)
. Finally,to_csv
operations involving :class:`PeriodArray` or :class:`PeriodIndex` with defaultdate_format
are also significantly accelerated. (:issue:`51459`) - Performance improvement accessing :attr:`arrays.IntegerArrays.dtype` & :attr:`arrays.FloatingArray.dtype` (:issue:`52998`)
- Performance improvement in :class:`MultiIndex` and multi-column operations (e.g. :meth:`DataFrame.sort_values`, :meth:`DataFrame.groupby`, :meth:`Series.unstack`) when index/column values are already sorted (:issue:`53806`)
- Performance improvement in :class:`Series` reductions (:issue:`52341`)
- Performance improvement in :func:`concat` when
axis=1
and objects have different indexes (:issue:`52541`) - Performance improvement in :func:`concat` when the concatenation axis is a :class:`MultiIndex` (:issue:`53574`)
- Performance improvement in :meth:`.DataFrameGroupBy.groups` (:issue:`53088`)
- Performance improvement in :meth:`DataFrame.isin` for extension dtypes (:issue:`53514`)
- Performance improvement in :meth:`DataFrame.loc` when selecting rows and columns (:issue:`53014`)
- Performance improvement in :meth:`Series.add` for pyarrow string and binary dtypes (:issue:`53150`)
- Performance improvement in :meth:`Series.corr` and :meth:`Series.cov` for extension dtypes (:issue:`52502`)
- Performance improvement in :meth:`Series.str.get_dummies` for pyarrow-backed strings (:issue:`53655`)
- Performance improvement in :meth:`Series.str.get` for pyarrow-backed strings (:issue:`53152`)
- Performance improvement in :meth:`Series.str.split` with
expand=True
for pyarrow-backed strings (:issue:`53585`) - Performance improvement in :meth:`Series.to_numpy` when dtype is a numpy float dtype and
na_value
isnp.nan
(:issue:`52430`) - Performance improvement in :meth:`~arrays.ArrowExtensionArray.astype` when converting from a pyarrow timestamp or duration dtype to numpy (:issue:`53326`)
- Performance improvement in :meth:`~arrays.ArrowExtensionArray.to_numpy` (:issue:`52525`)
- Performance improvement when doing various reshaping operations on :class:`arrays.IntegerArrays` & :class:`arrays.FloatingArray` by avoiding doing unnecessary validation (:issue:`53013`)
- Performance improvement when indexing with pyarrow timestamp and duration dtypes (:issue:`53368`)
- Bug in :meth:`Series.astype` with
dtype="category"
for nullable arrays with read-only null value masks (:issue:`53658`) - Bug in :meth:`Series.map` , where the value of the
na_action
parameter was not used if the series held a :class:`Categorical` (:issue:`22527`).
- :meth:`DatetimeIndex.map` with
na_action="ignore"
now works as expected. (:issue:`51644`) - Bug in :class:`DateOffset` which had inconsistent behavior when multiplying a :class:`DateOffset` object by a constant (:issue:`47953`)
- Bug in :func:`date_range` when
freq
was a :class:`DateOffset` withnanoseconds
(:issue:`46877`) - Bug in :meth:`Timestamp.date`, :meth:`Timestamp.isocalendar`, :meth:`Timestamp.timetuple`, and :meth:`Timestamp.toordinal` were returning incorrect results for inputs outside those supported by the Python standard library's datetime module (:issue:`53668`)
- Bug in :meth:`Timestamp.round` with values close to the implementation bounds returning incorrect results instead of raising
OutOfBoundsDatetime
(:issue:`51494`) - Bug in :meth:`arrays.DatetimeArray.map` and :meth:`DatetimeIndex.map`, where the supplied callable operated array-wise instead of element-wise (:issue:`51977`)
- Bug in constructing a :class:`Series` or :class:`DataFrame` from a datetime or timedelta scalar always inferring nanosecond resolution instead of inferring from the input (:issue:`52212`)
- Bug in parsing datetime strings with weekday but no day e.g. "2023 Sept Thu" incorrectly raising
AttributeError
instead ofValueError
(:issue:`52659`)
- :meth:`TimedeltaIndex.map` with
na_action="ignore"
now works as expected (:issue:`51644`) - Bug in :class:`TimedeltaIndex` division or multiplication leading to
.freq
of "0 Days" instead ofNone
(:issue:`51575`) - Bug in :class:`Timedelta` with Numpy timedelta64 objects not properly raising
ValueError
(:issue:`52806`) - Bug in :meth:`Timedelta.round` with values close to the implementation bounds returning incorrect results instead of raising
OutOfBoundsTimedelta
(:issue:`51494`) - Bug in :meth:`arrays.TimedeltaArray.map` and :meth:`TimedeltaIndex.map`, where the supplied callable operated array-wise instead of element-wise (:issue:`51977`)
- Bug in :func:`infer_freq` that raises
TypeError
forSeries
of timezone-aware timestamps (:issue:`52456`) - Bug in :meth:`DatetimeTZDtype.base` that always returns a NumPy dtype with nanosecond resolution (:issue:`52705`)
- Bug in :class:`RangeIndex` setting
step
incorrectly when being the subtrahend with minuend a numeric value (:issue:`53255`) - Bug in :meth:`Series.corr` and :meth:`Series.cov` raising
AttributeError
for masked dtypes (:issue:`51422`) - Bug when calling :meth:`Series.kurt` and :meth:`Series.skew` on numpy data of all zero returning a python type instead of a numpy type (:issue:`53482`)
- Bug in :meth:`Series.mean`, :meth:`DataFrame.mean` with object-dtype values containing strings that can be converted to numbers (e.g. "2") returning incorrect numeric results; these now raise
TypeError
(:issue:`36703`, :issue:`44008`) - Bug in :meth:`DataFrame.corrwith` raising
NotImplementedError
for pyarrow-backed dtypes (:issue:`52314`) - Bug in :meth:`DataFrame.size` and :meth:`Series.size` returning 64-bit integer instead of int (:issue:`52897`)
- Bug in :meth:`Series.any`, :meth:`Series.all`, :meth:`DataFrame.any`, and :meth:`DataFrame.all` had the default value of
bool_only
set toNone
instead ofFalse
; this change should have no impact on users (:issue:`53258`) - Bug in :meth:`Series.corr` and :meth:`Series.cov` raising
AttributeError
for masked dtypes (:issue:`51422`) - Bug in :meth:`Series.median` and :meth:`DataFrame.median` with object-dtype values containing strings that can be converted to numbers (e.g. "2") returning incorrect numeric results; these now raise
TypeError
(:issue:`34671`) - Bug in :meth:`Series.sum` converting dtype
uint64
toint64
(:issue:`53401`)
- Bug in :func:`DataFrame.style.to_latex` and :func:`DataFrame.style.to_html` if the DataFrame contains integers with more digits than can be represented by floating point double precision (:issue:`52272`)
- Bug in :func:`array` when given a
datetime64
ortimedelta64
dtype with unit of "s", "us", or "ms" returning :class:`PandasArray` instead of :class:`DatetimeArray` or :class:`TimedeltaArray` (:issue:`52859`) - Bug in :meth:`ArrowDtype.numpy_dtype` returning nanosecond units for non-nanosecond
pyarrow.timestamp
andpyarrow.duration
types (:issue:`51800`) - Bug in :meth:`DataFrame.__repr__` incorrectly raising a
TypeError
when the dtype of a column isnp.record
(:issue:`48526`) - Bug in :meth:`DataFrame.info` raising
ValueError
whenuse_numba
is set (:issue:`51922`) - Bug in :meth:`DataFrame.insert` raising
TypeError
ifloc
isnp.int64
(:issue:`53193`)
- :meth:`pd.IntervalIndex.get_indexer` and :meth:`pd.IntervalIndex.get_indexer_nonunique` raising if
target
is read-only array (:issue:`53703`)
- Bug in :meth:`DataFrame.__setitem__` losing dtype when setting a :class:`DataFrame` into duplicated columns (:issue:`53143`)
- Bug in :meth:`DataFrame.__setitem__` with a boolean mask and :meth:`DataFrame.putmask` with mixed non-numeric dtypes and a value other than
NaN
incorrectly raisingTypeError
(:issue:`53291`) - Bug in :meth:`DataFrame.iloc` when using
nan
as the only element (:issue:`52234`)
- Bug in :meth:`DataFrame.interpolate` ignoring
inplace
when :class:`DataFrame` is empty (:issue:`53199`) - Bug in :meth:`Series.interpolate` and :meth:`DataFrame.interpolate` failing to raise on invalid
downcast
keyword, which can be onlyNone
or "infer" (:issue:`53103`) - Bug in :meth:`Series.interpolate` and :meth:`DataFrame.interpolate` with complex dtype incorrectly failing to fill
NaN
entries (:issue:`53635`)
- Bug in :meth:`MultiIndex.set_levels` not preserving dtypes for :class:`Categorical` (:issue:`52125`)
- Bug in displaying a :class:`MultiIndex` with a long element (:issue:`52960`)
- :meth:`DataFrame.to_orc` now raising
ValueError
when non-default :class:`Index` is given (:issue:`51828`) - :meth:`DataFrame.to_sql` now raising
ValueError
when the name param is left empty while using SQLAlchemy to connect (:issue:`52675`) - Bug in :func:`json_normalize`, fix json_normalize cannot parse metadata fields list type (:issue:`37782`)
- Bug in :func:`read_csv` where it would error when
parse_dates
was set to a list or dictionary withengine="pyarrow"
(:issue:`47961`) - Bug in :func:`read_csv`, with
engine="pyarrow"
erroring when specifying adtype
withindex_col
(:issue:`53229`) - Bug in :func:`read_hdf` not properly closing store after a
IndexError
is raised (:issue:`52781`) - Bug in :func:`read_html`, style elements were read into DataFrames (:issue:`52197`)
- Bug in :func:`read_html`, tail texts were removed together with elements containing
display:none
style (:issue:`51629`) - Bug in :func:`read_sql` when reading multiple timezone aware columns with the same column name (:issue:`44421`)
- Bug when writing and reading empty Stata dta files where dtype information was lost (:issue:`46240`)
- :meth:`PeriodIndex.map` with
na_action="ignore"
now works as expected (:issue:`51644`) - Bug in :class:`PeriodDtype` constructor failing to raise
TypeError
when no argument is passed or whenNone
is passed (:issue:`27388`) - Bug in :class:`PeriodDtype` constructor incorrectly returning the same
normalize
for different :class:`DateOffset`freq
inputs (:issue:`24121`) - Bug in :class:`PeriodDtype` constructor raising
ValueError
instead ofTypeError
when an invalid type is passed (:issue:`51790`) - Bug in :func:`read_csv` not processing empty strings as a null value, with
engine="pyarrow"
(:issue:`52087`) - Bug in :func:`read_csv` returning
object
dtype columns instead offloat64
dtype columns withengine="pyarrow"
for columns that are all null withengine="pyarrow"
(:issue:`52087`) - Bug in :meth:`arrays.PeriodArray.map` and :meth:`PeriodIndex.map`, where the supplied callable operated array-wise instead of element-wise (:issue:`51977`)
- Bug in incorrectly allowing construction of :class:`Period` or :class:`PeriodDtype` with :class:`CustomBusinessDay` freq; use :class:`BusinessDay` instead (:issue:`52534`)
- Bug in :meth:`Series.plot` when invoked with
color=None
(:issue:`51953`)
- Bug in :meth:`DataFrame.resample` and :meth:`Series.resample` in incorrectly allowing non-fixed
freq
when resampling on a :class:`TimedeltaIndex` (:issue:`51896`) - Bug in :meth:`DataFrame.resample` and :meth:`Series.resample` losing time zone when resampling empty data (:issue:`53664`)
- Bug in :meth:`DataFrameGroupBy.idxmin`, :meth:`SeriesGroupBy.idxmin`, :meth:`DataFrameGroupBy.idxmax`, :meth:`SeriesGroupBy.idxmax` return wrong dtype when used on empty DataFrameGroupBy or SeriesGroupBy (:issue:`51423`)
- Bug in weighted rolling aggregations when specifying
min_periods=0
(:issue:`51449`) - Bug in :meth:`DataFrame.groupby` and :meth:`Series.groupby`, where, when the index of the
grouped :class:`Series` or :class:`DataFrame` was a :class:`DatetimeIndex`, :class:`TimedeltaIndex`
or :class:`PeriodIndex`, and the
groupby
method was given a function as its first argument, the function operated on the whole index rather than each element of the index. (:issue:`51979`) - Bug in :meth:`DataFrame.groupby` with column selection on the resulting groupby object not returning names as tuples when grouping by a list of a single element. (:issue:`53500`)
- Bug in :meth:`DataFrameGroupBy.agg` with lists not respecting
as_index=False
(:issue:`52849`) - Bug in :meth:`DataFrameGroupBy.apply` causing an error to be raised when the input :class:`DataFrame` was subset as a :class:`DataFrame` after groupby (
[['a']]
and not['a']
) and the given callable returned :class:`Series` that were not all indexed the same. (:issue:`52444`) - Bug in :meth:`DataFrameGroupBy.apply` raising a
TypeError
when selecting multiple columns and providing a function that returnsnp.ndarray
results (:issue:`18930`) - Bug in :meth:`GroupBy.groups` with a datetime key in conjunction with another key produced incorrect number of group keys (:issue:`51158`)
- Bug in :meth:`GroupBy.quantile` may implicitly sort the result index with
sort=False
(:issue:`53009`) - Bug in :meth:`GroupBy.var` failing to raise
TypeError
when called with datetime64, timedelta64 or :class:`PeriodDtype` values (:issue:`52128`, :issue:`53045`) - Bug in :meth:`SeriesGroupBy.nth` and :meth:`DataFrameGroupBy.nth` after performing column selection when using
dropna="any"
ordropna="all"
would not subset columns (:issue:`53518`) - Bug in :meth:`SeriesGroupBy.nth` and :meth:`DataFrameGroupBy.nth` raised after performing column selection when using
dropna="any"
ordropna="all"
resulted in rows being dropped (:issue:`53518`) - Bug in :meth:`SeriesGroupBy.sum` and :meth:`DataFrameGroupby.sum` summing
np.inf + np.inf
and(-np.inf) + (-np.inf)
tonp.nan
(:issue:`53606`)
- Bug in :func:`concat` coercing to
object
dtype when one column haspa.null()
dtype (:issue:`53702`) - Bug in :func:`crosstab` when
dropna=False
would not keepnp.nan
in the result (:issue:`10772`) - Bug in :func:`merge_asof` raising
KeyError
for extension dtypes (:issue:`52904`) - Bug in :func:`merge_asof` raising
ValueError
for data backed by read-only ndarrays (:issue:`53513`) - Bug in :meth:`DataFrame.agg` and :meth:`Series.agg` on non-unique columns would return incorrect type when dist-like argument passed in (:issue:`51099`)
- Bug in :meth:`DataFrame.combine_first` ignoring other's columns if
other
is empty (:issue:`53792`) - Bug in :meth:`DataFrame.idxmin` and :meth:`DataFrame.idxmax`, where the axis dtype would be lost for empty frames (:issue:`53265`)
- Bug in :meth:`DataFrame.merge` not merging correctly when having
MultiIndex
with single level (:issue:`52331`) - Bug in :meth:`DataFrame.stack` losing extension dtypes when columns is a :class:`MultiIndex` and frame contains mixed dtypes (:issue:`45740`)
- Bug in :meth:`DataFrame.stack` sorting columns lexicographically (:issue:`53786`)
- Bug in :meth:`DataFrame.transpose` inferring dtype for object column (:issue:`51546`)
- Bug in :meth:`Series.combine_first` converting
int64
dtype tofloat64
and losing precision on very large integers (:issue:`51764`)
- Bug in :class:`SparseDtype` constructor failing to raise
TypeError
when given an incompatibledtype
for its subtype, which must be anumpy
dtype (:issue:`53160`) - Bug in :meth:`arrays.SparseArray.map` allowed the fill value to be included in the sparse values (:issue:`52095`)
- Bug in :class:`~arrays.ArrowExtensionArray` converting pandas non-nanosecond temporal objects from non-zero values to zero values (:issue:`53171`)
- Bug in :meth:`Series.quantile` for pyarrow temporal types raising ArrowInvalid (:issue:`52678`)
- Bug in :meth:`Series.rank` returning wrong order for small values with
Float64
dtype (:issue:`52471`) - Bug in :meth:`~arrays.ArrowExtensionArray.__iter__` and :meth:`~arrays.ArrowExtensionArray.__getitem__` returning python datetime and timedelta objects for non-nano dtypes (:issue:`53326`)
- Bug where the
__from_arrow__
method of masked ExtensionDtypes(e.g. :class:`Float64Dtype`, :class:`BooleanDtype`) would not accept pyarrow arrays of typepyarrow.null()
(:issue:`52223`)
- Bug in :meth:`Styler._copy` calling overridden methods in subclasses of :class:`Styler` (:issue:`52728`)
- Fixed metadata propagation in :meth:`DataFrame.squeeze`, and :meth:`DataFrame.describe` (:issue:`28283`)
- Fixed metadata propagation in :meth:`DataFrame.std` (:issue:`28283`)
- Bug in :class:`DataFrame` and :class:`Series` raising for data of complex dtype when
NaN
values are present (:issue:`53627`) - Bug in :class:`FloatingArray.__contains__` with
NaN
item incorrectly returningFalse
whenNaN
values are present (:issue:`52840`) - Bug in :func:`api.interchange.from_dataframe` when converting an empty DataFrame object (:issue:`53155`)
- Bug in :func:`assert_almost_equal` now throwing assertion error for two unequal sets (:issue:`51727`)
- Bug in :func:`assert_frame_equal` checks category dtypes even when asked not to check index type (:issue:`52126`)
- Bug in :meth:`DataFrame.reindex` with a
fill_value
that should be inferred with a :class:`ExtensionDtype` incorrectly inferringobject
dtype (:issue:`52586`) - Bug in :meth:`Series.align`, :meth:`DataFrame.align`, :meth:`Series.reindex`, :meth:`DataFrame.reindex`, :meth:`Series.interpolate`, :meth:`DataFrame.interpolate`, incorrectly failing to raise with method="asfreq" (:issue:`53620`)
- Bug in :meth:`Series.map` when giving a callable to an empty series, the returned series had
object
dtype. It now keeps the original dtype (:issue:`52384`) - Bug in :meth:`Series.memory_usage` when
deep=True
throw an error with Series of objects and the returned value is incorrect, as it does not take into account GC corrections (:issue:`51858`) - Fixed incorrect
__name__
attribute ofpandas._libs.json
(:issue:`52898`)