-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathcsvs.py
350 lines (295 loc) · 11 KB
/
csvs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
"""
Module for formatting output data into CSV files.
"""
from __future__ import annotations
from collections.abc import (
Hashable,
Iterable,
Iterator,
Sequence,
)
import csv as csvlib
import json
import os
from typing import (
TYPE_CHECKING,
Any,
cast,
)
import numpy as np
from pandas._libs import writers as libwriters
from pandas._typing import SequenceNotStr
from pandas.util._decorators import cache_readonly
from pandas.core.dtypes.generic import (
ABCDatetimeIndex,
ABCIndex,
ABCMultiIndex,
ABCPeriodIndex,
)
from pandas.core.dtypes.missing import notna
from pandas.core.indexes.api import Index
from pandas.io.common import get_handle
if TYPE_CHECKING:
from pandas._typing import (
CompressionOptions,
FilePath,
FloatFormatType,
IndexLabel,
StorageOptions,
WriteBuffer,
npt,
)
from pandas.io.formats.format import DataFrameFormatter
_DEFAULT_CHUNKSIZE_CELLS = 100_000
class CSVFormatter:
cols: npt.NDArray[np.object_]
def __init__(
self,
formatter: DataFrameFormatter,
path_or_buf: FilePath | WriteBuffer[str] | WriteBuffer[bytes] = "",
sep: str = ",",
cols: Sequence[Hashable] | None = None,
index_label: IndexLabel | None = None,
mode: str = "w",
encoding: str | None = None,
errors: str = "strict",
compression: CompressionOptions = "infer",
quoting: int | None = None,
lineterminator: str | None = "\n",
chunksize: int | None = None,
quotechar: str | None = '"',
date_format: str | None = None,
doublequote: bool = True,
escapechar: str | None = None,
storage_options: StorageOptions | None = None,
preserve_complex: bool = False,
) -> None:
self.fmt = formatter
self.obj = self.fmt.frame
self.filepath_or_buffer = path_or_buf
self.encoding = encoding
self.compression: CompressionOptions = compression
self.mode = mode
self.storage_options = storage_options
self.preserve_complex = preserve_complex
self.sep = sep
self.index_label = self._initialize_index_label(index_label)
self.errors = errors
self.quoting = quoting or csvlib.QUOTE_MINIMAL
self.quotechar = self._initialize_quotechar(quotechar)
self.doublequote = doublequote
self.escapechar = escapechar
self.lineterminator = lineterminator or os.linesep
self.date_format = date_format
self.cols = self._initialize_columns(cols)
self.chunksize = self._initialize_chunksize(chunksize)
if self.preserve_complex:
for col in self.obj.columns:
if self.obj[col].dtype == "O":
first_val = self.obj[col].iloc[0]
if isinstance(first_val, (np.ndarray, list)):
self.obj[col] = self.obj[col].apply(
lambda x: json.dumps(x.tolist())
if isinstance(x, np.ndarray)
else json.dumps(x)
if isinstance(x, list)
else x
)
@property
def na_rep(self) -> str:
return self.fmt.na_rep
@property
def float_format(self) -> FloatFormatType | None:
return self.fmt.float_format
@property
def decimal(self) -> str:
return self.fmt.decimal
@property
def header(self) -> bool | SequenceNotStr[str]:
return self.fmt.header
@property
def index(self) -> bool:
return self.fmt.index
def _initialize_index_label(self, index_label: IndexLabel | None) -> IndexLabel:
if index_label is not False:
if index_label is None:
return self._get_index_label_from_obj()
elif not isinstance(index_label, (list, tuple, np.ndarray, ABCIndex)):
# given a string for a DF with Index
return [index_label]
return index_label
def _get_index_label_from_obj(self) -> Sequence[Hashable]:
if isinstance(self.obj.index, ABCMultiIndex):
return self._get_index_label_multiindex()
else:
return self._get_index_label_flat()
def _get_index_label_multiindex(self) -> Sequence[Hashable]:
return [name or "" for name in self.obj.index.names]
def _get_index_label_flat(self) -> Sequence[Hashable]:
index_label = self.obj.index.name
return [""] if index_label is None else [index_label]
def _initialize_quotechar(self, quotechar: str | None) -> str | None:
if self.quoting != csvlib.QUOTE_NONE:
# prevents crash in _csv
return quotechar
return None
@property
def has_mi_columns(self) -> bool:
return bool(isinstance(self.obj.columns, ABCMultiIndex))
def _initialize_columns(
self, cols: Iterable[Hashable] | None
) -> npt.NDArray[np.object_]:
# validate mi options
if self.has_mi_columns:
if cols is not None:
msg = "cannot specify cols with a MultiIndex on the columns"
raise TypeError(msg)
if cols is not None:
if isinstance(cols, ABCIndex):
cols = cols._get_values_for_csv(**self._number_format)
else:
cols = list(cols)
self.obj = self.obj.loc[:, cols]
# update columns to include possible multiplicity of dupes
# and make sure cols is just a list of labels
new_cols = self.obj.columns
return new_cols._get_values_for_csv(**self._number_format)
def _initialize_chunksize(self, chunksize: int | None) -> int:
if chunksize is None:
return (_DEFAULT_CHUNKSIZE_CELLS // (len(self.cols) or 1)) or 1
return int(chunksize)
@property
def _number_format(self) -> dict[str, Any]:
"""Dictionary used for storing number formatting settings."""
return {
"na_rep": self.na_rep,
"float_format": self.float_format,
"date_format": self.date_format,
"quoting": self.quoting,
"decimal": self.decimal,
}
@cache_readonly
def data_index(self) -> Index:
data_index = self.obj.index
if (
isinstance(data_index, (ABCDatetimeIndex, ABCPeriodIndex))
and self.date_format is not None
):
data_index = Index(
[x.strftime(self.date_format) if notna(x) else "" for x in data_index]
)
elif isinstance(data_index, ABCMultiIndex):
data_index = data_index.remove_unused_levels()
return data_index
@property
def nlevels(self) -> int:
if self.index:
return getattr(self.data_index, "nlevels", 1)
else:
return 0
@property
def _has_aliases(self) -> bool:
return isinstance(self.header, (tuple, list, np.ndarray, ABCIndex))
@property
def _need_to_save_header(self) -> bool:
return bool(self._has_aliases or self.header)
@property
def write_cols(self) -> SequenceNotStr[Hashable]:
if self._has_aliases:
assert not isinstance(self.header, bool)
if len(self.header) != len(self.cols):
raise ValueError(
f"Writing {len(self.cols)} cols but got {len(self.header)} aliases"
)
return self.header
else:
# self.cols is an ndarray derived from Index._get_values_for_csv,
# so its entries are strings, i.e. hashable
return cast(SequenceNotStr[Hashable], self.cols)
@property
def encoded_labels(self) -> list[Hashable]:
encoded_labels: list[Hashable] = []
if self.index and self.index_label:
assert isinstance(self.index_label, Sequence)
encoded_labels = list(self.index_label)
if not self.has_mi_columns or self._has_aliases:
encoded_labels += list(self.write_cols)
return encoded_labels
def save(self) -> None:
"""
Create the writer & save.
"""
# apply compression and byte/text conversion
with get_handle(
self.filepath_or_buffer,
self.mode,
encoding=self.encoding,
errors=self.errors,
compression=self.compression,
storage_options=self.storage_options,
) as handles:
# Note: self.encoding is irrelevant here
self.writer = csvlib.writer(
handles.handle,
lineterminator=self.lineterminator,
delimiter=self.sep,
quoting=self.quoting,
doublequote=self.doublequote,
escapechar=self.escapechar,
quotechar=self.quotechar,
)
self._save()
def _save(self) -> None:
if self._need_to_save_header:
self._save_header()
self._save_body()
def _save_header(self) -> None:
if not self.has_mi_columns or self._has_aliases:
self.writer.writerow(self.encoded_labels)
else:
for row in self._generate_multiindex_header_rows():
self.writer.writerow(row)
def _generate_multiindex_header_rows(self) -> Iterator[list[Hashable]]:
columns = self.obj.columns
for i in range(columns.nlevels):
# we need at least 1 index column to write our col names
col_line = []
if self.index:
# name is the first column
col_line.append(columns.names[i])
if isinstance(self.index_label, list) and len(self.index_label) > 1:
col_line.extend([""] * (len(self.index_label) - 1))
col_line.extend(columns._get_level_values(i))
yield col_line
# Write out the index line if it's not empty.
# Otherwise, we will print out an extraneous
# blank line between the mi and the data rows.
if self.encoded_labels and set(self.encoded_labels) != {""}:
yield self.encoded_labels + [""] * len(columns)
def _save_body(self) -> None:
nrows = len(self.data_index)
chunks = (nrows // self.chunksize) + 1
for i in range(chunks):
start_i = i * self.chunksize
end_i = min(start_i + self.chunksize, nrows)
if start_i >= end_i:
break
self._save_chunk(start_i, end_i)
def _save_chunk(self, start_i: int, end_i: int) -> None:
# create the data for a chunk
slicer = slice(start_i, end_i)
df = self.obj.iloc[slicer]
res = df._get_values_for_csv(**self._number_format)
data = list(res._iter_column_arrays())
ix = (
self.data_index[slicer]._get_values_for_csv(**self._number_format)
if self.nlevels != 0
else np.empty(end_i - start_i)
)
libwriters.write_csv_rows(
data,
ix,
self.nlevels,
self.cols,
self.writer,
)