-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathalgorithms.py
1258 lines (1044 loc) · 41.6 KB
/
algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Generic data algorithms. This module is experimental at the moment and not
intended for public consumption
"""
from __future__ import division
from warnings import warn
import numpy as np
from pandas import compat, lib, tslib, _np_version_under1p8
from pandas.types.cast import _maybe_promote
from pandas.types.generic import ABCSeries, ABCIndex
from pandas.types.common import (is_integer_dtype,
is_int64_dtype,
is_categorical_dtype,
is_extension_type,
is_datetimetz,
is_period_dtype,
is_period_arraylike,
is_float_dtype,
needs_i8_conversion,
is_categorical,
is_datetime64_dtype,
is_timedelta64_dtype,
is_scalar,
_ensure_platform_int,
_ensure_object,
_ensure_float64,
_ensure_int64,
is_list_like)
from pandas.types.missing import isnull
import pandas.core.common as com
import pandas.algos as algos
import pandas.hashtable as htable
from pandas.compat import string_types
from pandas.tslib import iNaT
# --------------- #
# top-level algos #
# --------------- #
def match(to_match, values, na_sentinel=-1):
"""
Compute locations of to_match into values
Parameters
----------
to_match : array-like
values to find positions of
values : array-like
Unique set of values
na_sentinel : int, default -1
Value to mark "not found"
Examples
--------
Returns
-------
match : ndarray of integers
"""
values = com._asarray_tuplesafe(values)
if issubclass(values.dtype.type, string_types):
values = np.array(values, dtype='O')
f = lambda htype, caster: _match_generic(to_match, values, htype, caster)
result = _hashtable_algo(f, values.dtype, np.int64)
if na_sentinel != -1:
# replace but return a numpy array
# use a Series because it handles dtype conversions properly
from pandas.core.series import Series
result = Series(result.ravel()).replace(-1, na_sentinel).values.\
reshape(result.shape)
return result
def _match_generic(values, index, table_type, type_caster):
values = type_caster(values)
index = type_caster(index)
table = table_type(min(len(index), 1000000))
table.map_locations(index)
return table.lookup(values)
def unique(values):
"""
Compute unique values (not necessarily sorted) efficiently from input array
of values
Parameters
----------
values : array-like
Returns
-------
uniques
"""
values = com._asarray_tuplesafe(values)
f = lambda htype, caster: _unique_generic(values, htype, caster)
return _hashtable_algo(f, values.dtype)
def _unique_generic(values, table_type, type_caster):
values = type_caster(values)
table = table_type(min(len(values), 1000000))
uniques = table.unique(values)
return type_caster(uniques)
def isin(comps, values):
"""
Compute the isin boolean array
Parameters
----------
comps: array-like
values: array-like
Returns
-------
boolean array same length as comps
"""
if not is_list_like(comps):
raise TypeError("only list-like objects are allowed to be passed"
" to isin(), you passed a "
"[{0}]".format(type(comps).__name__))
comps = np.asarray(comps)
if not is_list_like(values):
raise TypeError("only list-like objects are allowed to be passed"
" to isin(), you passed a "
"[{0}]".format(type(values).__name__))
if not isinstance(values, np.ndarray):
values = list(values)
# GH11232
# work-around for numpy < 1.8 and comparisions on py3
# faster for larger cases to use np.in1d
if (_np_version_under1p8 and compat.PY3) or len(comps) > 1000000:
f = lambda x, y: np.in1d(x, np.asarray(list(y)))
else:
f = lambda x, y: lib.ismember_int64(x, set(y))
# may need i8 conversion for proper membership testing
if is_datetime64_dtype(comps):
from pandas.tseries.tools import to_datetime
values = to_datetime(values)._values.view('i8')
comps = comps.view('i8')
elif is_timedelta64_dtype(comps):
from pandas.tseries.timedeltas import to_timedelta
values = to_timedelta(values)._values.view('i8')
comps = comps.view('i8')
elif is_int64_dtype(comps):
pass
else:
f = lambda x, y: lib.ismember(x, set(values))
return f(comps, values)
def safe_sort(values, labels=None, na_sentinel=-1, assume_unique=False):
"""
Sort ``values`` and reorder corresponding ``labels``.
``values`` should be unique if ``labels`` is not None.
Safe for use with mixed types (int, str), orders ints before strs.
.. versionadded:: 0.19.0
Parameters
----------
values : list-like
Sequence; must be unique if ``labels`` is not None.
labels : list_like
Indices to ``values``. All out of bound indices are treated as
"not found" and will be masked with ``na_sentinel``.
na_sentinel : int, default -1
Value in ``labels`` to mark "not found".
Ignored when ``labels`` is None.
assume_unique : bool, default False
When True, ``values`` are assumed to be unique, which can speed up
the calculation. Ignored when ``labels`` is None.
Returns
-------
ordered : ndarray
Sorted ``values``
new_labels : ndarray
Reordered ``labels``; returned when ``labels`` is not None.
Raises
------
TypeError
* If ``values`` is not list-like or if ``labels`` is neither None
nor list-like
* If ``values`` cannot be sorted
ValueError
* If ``labels`` is not None and ``values`` contain duplicates.
"""
if not is_list_like(values):
raise TypeError("Only list-like objects are allowed to be passed to"
"safe_sort as values")
values = np.array(values, copy=False)
def sort_mixed(values):
# order ints before strings, safe in py3
str_pos = np.array([isinstance(x, string_types) for x in values],
dtype=bool)
nums = np.sort(values[~str_pos])
strs = np.sort(values[str_pos])
return _ensure_object(np.concatenate([nums, strs]))
sorter = None
if compat.PY3 and lib.infer_dtype(values) == 'mixed-integer':
# unorderable in py3 if mixed str/int
ordered = sort_mixed(values)
else:
try:
sorter = values.argsort()
ordered = values.take(sorter)
except TypeError:
# try this anyway
ordered = sort_mixed(values)
# labels:
if labels is None:
return ordered
if not is_list_like(labels):
raise TypeError("Only list-like objects or None are allowed to be"
"passed to safe_sort as labels")
labels = _ensure_platform_int(np.asarray(labels))
from pandas import Index
if not assume_unique and not Index(values).is_unique:
raise ValueError("values should be unique if labels is not None")
if sorter is None:
# mixed types
(hash_klass, _), values = _get_data_algo(values, _hashtables)
t = hash_klass(len(values))
t.map_locations(values)
sorter = _ensure_platform_int(t.lookup(ordered))
reverse_indexer = np.empty(len(sorter), dtype=np.int_)
reverse_indexer.put(sorter, np.arange(len(sorter)))
mask = (labels < -len(values)) | (labels >= len(values)) | \
(labels == na_sentinel)
# (Out of bound indices will be masked with `na_sentinel` next, so we may
# deal with them here without performance loss using `mode='wrap'`.)
new_labels = reverse_indexer.take(labels, mode='wrap')
np.putmask(new_labels, mask, na_sentinel)
return ordered, _ensure_platform_int(new_labels)
def factorize(values, sort=False, order=None, na_sentinel=-1, size_hint=None):
"""
Encode input values as an enumerated type or categorical variable
Parameters
----------
values : ndarray (1-d)
Sequence
sort : boolean, default False
Sort by values
na_sentinel : int, default -1
Value to mark "not found"
size_hint : hint to the hashtable sizer
Returns
-------
labels : the indexer to the original array
uniques : ndarray (1-d) or Index
the unique values. Index is returned when passed values is Index or
Series
note: an array of Periods will ignore sort as it returns an always sorted
PeriodIndex
"""
from pandas import Index, Series, DatetimeIndex, PeriodIndex
# handling two possibilities here
# - for a numpy datetimelike simply view as i8 then cast back
# - for an extension datetimelike view as i8 then
# reconstruct from boxed values to transfer metadata
dtype = None
if needs_i8_conversion(values):
if is_period_dtype(values):
values = PeriodIndex(values)
vals = values.asi8
elif is_datetimetz(values):
values = DatetimeIndex(values)
vals = values.asi8
else:
# numpy dtype
dtype = values.dtype
vals = values.view(np.int64)
else:
vals = np.asarray(values)
(hash_klass, vec_klass), vals = _get_data_algo(vals, _hashtables)
table = hash_klass(size_hint or len(vals))
uniques = vec_klass()
labels = table.get_labels(vals, uniques, 0, na_sentinel, True)
labels = _ensure_platform_int(labels)
uniques = uniques.to_array()
if sort and len(uniques) > 0:
uniques, labels = safe_sort(uniques, labels, na_sentinel=na_sentinel,
assume_unique=True)
if dtype is not None:
uniques = uniques.astype(dtype)
if isinstance(values, Index):
uniques = values._shallow_copy(uniques, name=None)
elif isinstance(values, Series):
uniques = Index(uniques)
return labels, uniques
def value_counts(values, sort=True, ascending=False, normalize=False,
bins=None, dropna=True):
"""
Compute a histogram of the counts of non-null values.
Parameters
----------
values : ndarray (1-d)
sort : boolean, default True
Sort by values
ascending : boolean, default False
Sort in ascending order
normalize: boolean, default False
If True then compute a relative histogram
bins : integer, optional
Rather than count values, group them into half-open bins,
convenience for pd.cut, only works with numeric data
dropna : boolean, default True
Don't include counts of NaN
Returns
-------
value_counts : Series
"""
from pandas.core.series import Series
name = getattr(values, 'name', None)
if bins is not None:
try:
from pandas.tools.tile import cut
values = Series(values).values
cat, bins = cut(values, bins, retbins=True)
except TypeError:
raise TypeError("bins argument only works with numeric data.")
values = cat.codes
if is_extension_type(values) and not is_datetimetz(values):
# handle Categorical and sparse,
# datetime tz can be handeled in ndarray path
result = Series(values).values.value_counts(dropna=dropna)
result.name = name
counts = result.values
else:
# ndarray path. pass original to handle DatetimeTzBlock
keys, counts = _value_counts_arraylike(values, dropna=dropna)
from pandas import Index, Series
if not isinstance(keys, Index):
keys = Index(keys)
result = Series(counts, index=keys, name=name)
if bins is not None:
# TODO: This next line should be more efficient
result = result.reindex(np.arange(len(cat.categories)),
fill_value=0)
result.index = bins[:-1]
if sort:
result = result.sort_values(ascending=ascending)
if normalize:
result = result / float(counts.sum())
return result
def _value_counts_arraylike(values, dropna=True):
is_datetimetz_type = is_datetimetz(values)
is_period_type = (is_period_dtype(values) or
is_period_arraylike(values))
orig = values
from pandas.core.series import Series
values = Series(values).values
dtype = values.dtype
if needs_i8_conversion(dtype) or is_period_type:
from pandas.tseries.index import DatetimeIndex
from pandas.tseries.period import PeriodIndex
if is_period_type:
# values may be an object
values = PeriodIndex(values)
freq = values.freq
values = values.view(np.int64)
keys, counts = htable.value_count_int64(values, dropna)
if dropna:
msk = keys != iNaT
keys, counts = keys[msk], counts[msk]
# convert the keys back to the dtype we came in
keys = keys.astype(dtype)
# dtype handling
if is_datetimetz_type:
keys = DatetimeIndex._simple_new(keys, tz=orig.dtype.tz)
if is_period_type:
keys = PeriodIndex._simple_new(keys, freq=freq)
elif is_integer_dtype(dtype):
values = _ensure_int64(values)
keys, counts = htable.value_count_int64(values, dropna)
elif is_float_dtype(dtype):
values = _ensure_float64(values)
keys, counts = htable.value_count_float64(values, dropna)
else:
values = _ensure_object(values)
mask = isnull(values)
keys, counts = htable.value_count_object(values, mask)
if not dropna and mask.any():
keys = np.insert(keys, 0, np.NaN)
counts = np.insert(counts, 0, mask.sum())
return keys, counts
def duplicated(values, keep='first'):
"""
Return boolean ndarray denoting duplicate values
.. versionadded:: 0.19.0
Parameters
----------
keep : {'first', 'last', False}, default 'first'
- ``first`` : Mark duplicates as ``True`` except for the first
occurrence.
- ``last`` : Mark duplicates as ``True`` except for the last
occurrence.
- False : Mark all duplicates as ``True``.
Returns
-------
duplicated : ndarray
"""
dtype = values.dtype
# no need to revert to original type
if needs_i8_conversion(dtype):
values = values.view(np.int64)
elif is_period_arraylike(values):
from pandas.tseries.period import PeriodIndex
values = PeriodIndex(values).asi8
elif is_categorical_dtype(dtype):
values = values.values.codes
elif isinstance(values, (ABCSeries, ABCIndex)):
values = values.values
if is_integer_dtype(dtype):
values = _ensure_int64(values)
duplicated = htable.duplicated_int64(values, keep=keep)
elif is_float_dtype(dtype):
values = _ensure_float64(values)
duplicated = htable.duplicated_float64(values, keep=keep)
else:
values = _ensure_object(values)
duplicated = htable.duplicated_object(values, keep=keep)
return duplicated
def mode(values):
"""Returns the mode or mode(s) of the passed Series or ndarray (sorted)"""
# must sort because hash order isn't necessarily defined.
from pandas.core.series import Series
if isinstance(values, Series):
constructor = values._constructor
values = values.values
else:
values = np.asanyarray(values)
constructor = Series
dtype = values.dtype
if is_integer_dtype(values):
values = _ensure_int64(values)
result = constructor(sorted(htable.mode_int64(values)), dtype=dtype)
elif issubclass(values.dtype.type, (np.datetime64, np.timedelta64)):
dtype = values.dtype
values = values.view(np.int64)
result = constructor(sorted(htable.mode_int64(values)), dtype=dtype)
elif is_categorical_dtype(values):
result = constructor(values.mode())
else:
mask = isnull(values)
values = _ensure_object(values)
res = htable.mode_object(values, mask)
try:
res = sorted(res)
except TypeError as e:
warn("Unable to sort modes: %s" % e)
result = constructor(res, dtype=dtype)
return result
def rank(values, axis=0, method='average', na_option='keep',
ascending=True, pct=False):
"""
"""
if values.ndim == 1:
f, values = _get_data_algo(values, _rank1d_functions)
ranks = f(values, ties_method=method, ascending=ascending,
na_option=na_option, pct=pct)
elif values.ndim == 2:
f, values = _get_data_algo(values, _rank2d_functions)
ranks = f(values, axis=axis, ties_method=method,
ascending=ascending, na_option=na_option, pct=pct)
return ranks
_rank1d_functions = {
'float64': algos.rank_1d_float64,
'int64': algos.rank_1d_int64,
'generic': algos.rank_1d_generic
}
_rank2d_functions = {
'float64': algos.rank_2d_float64,
'int64': algos.rank_2d_int64,
'generic': algos.rank_2d_generic
}
def quantile(x, q, interpolation_method='fraction'):
"""
Compute sample quantile or quantiles of the input array. For example, q=0.5
computes the median.
The `interpolation_method` parameter supports three values, namely
`fraction` (default), `lower` and `higher`. Interpolation is done only,
if the desired quantile lies between two data points `i` and `j`. For
`fraction`, the result is an interpolated value between `i` and `j`;
for `lower`, the result is `i`, for `higher` the result is `j`.
Parameters
----------
x : ndarray
Values from which to extract score.
q : scalar or array
Percentile at which to extract score.
interpolation_method : {'fraction', 'lower', 'higher'}, optional
This optional parameter specifies the interpolation method to use,
when the desired quantile lies between two data points `i` and `j`:
- fraction: `i + (j - i)*fraction`, where `fraction` is the
fractional part of the index surrounded by `i` and `j`.
-lower: `i`.
- higher: `j`.
Returns
-------
score : float
Score at percentile.
Examples
--------
>>> from scipy import stats
>>> a = np.arange(100)
>>> stats.scoreatpercentile(a, 50)
49.5
"""
x = np.asarray(x)
mask = isnull(x)
x = x[~mask]
values = np.sort(x)
def _get_score(at):
if len(values) == 0:
return np.nan
idx = at * (len(values) - 1)
if idx % 1 == 0:
score = values[int(idx)]
else:
if interpolation_method == 'fraction':
score = _interpolate(values[int(idx)], values[int(idx) + 1],
idx % 1)
elif interpolation_method == 'lower':
score = values[np.floor(idx)]
elif interpolation_method == 'higher':
score = values[np.ceil(idx)]
else:
raise ValueError("interpolation_method can only be 'fraction' "
", 'lower' or 'higher'")
return score
if is_scalar(q):
return _get_score(q)
else:
q = np.asarray(q, np.float64)
return algos.arrmap_float64(q, _get_score)
def _interpolate(a, b, fraction):
"""Returns the point at the given fraction between a and b, where
'fraction' must be between 0 and 1.
"""
return a + (b - a) * fraction
def nsmallest(arr, n, keep='first'):
"""
Find the indices of the n smallest values of a numpy array.
Note: Fails silently with NaN.
"""
if keep == 'last':
arr = arr[::-1]
narr = len(arr)
n = min(n, narr)
sdtype = str(arr.dtype)
arr = arr.view(_dtype_map.get(sdtype, sdtype))
kth_val = algos.kth_smallest(arr.copy(), n - 1)
return _finalize_nsmallest(arr, kth_val, n, keep, narr)
def nlargest(arr, n, keep='first'):
"""
Find the indices of the n largest values of a numpy array.
Note: Fails silently with NaN.
"""
sdtype = str(arr.dtype)
arr = arr.view(_dtype_map.get(sdtype, sdtype))
return nsmallest(-arr, n, keep=keep)
def select_n_slow(dropped, n, keep, method):
reverse_it = (keep == 'last' or method == 'nlargest')
ascending = method == 'nsmallest'
slc = np.s_[::-1] if reverse_it else np.s_[:]
return dropped[slc].sort_values(ascending=ascending).head(n)
_select_methods = {'nsmallest': nsmallest, 'nlargest': nlargest}
def select_n_series(series, n, keep, method):
"""Implement n largest/smallest for pandas Series
Parameters
----------
series : pandas.Series object
n : int
keep : {'first', 'last'}, default 'first'
method : str, {'nlargest', 'nsmallest'}
Returns
-------
nordered : Series
"""
dtype = series.dtype
if not issubclass(dtype.type, (np.integer, np.floating, np.datetime64,
np.timedelta64)):
raise TypeError("Cannot use method %r with dtype %s" % (method, dtype))
if keep not in ('first', 'last'):
raise ValueError('keep must be either "first", "last"')
if n <= 0:
return series[[]]
dropped = series.dropna()
if n >= len(series):
return select_n_slow(dropped, n, keep, method)
inds = _select_methods[method](dropped.values, n, keep)
return dropped.iloc[inds]
def select_n_frame(frame, columns, n, method, keep):
"""Implement n largest/smallest for pandas DataFrame
Parameters
----------
frame : pandas.DataFrame object
columns : list or str
n : int
keep : {'first', 'last'}, default 'first'
method : str, {'nlargest', 'nsmallest'}
Returns
-------
nordered : DataFrame
"""
from pandas.core.series import Series
if not is_list_like(columns):
columns = [columns]
columns = list(columns)
ser = getattr(frame[columns[0]], method)(n, keep=keep)
if isinstance(ser, Series):
ser = ser.to_frame()
return ser.merge(frame, on=columns[0], left_index=True)[frame.columns]
def _finalize_nsmallest(arr, kth_val, n, keep, narr):
ns, = np.nonzero(arr <= kth_val)
inds = ns[arr[ns].argsort(kind='mergesort')][:n]
if keep == 'last':
# reverse indices
return narr - 1 - inds
else:
return inds
_dtype_map = {'datetime64[ns]': 'int64', 'timedelta64[ns]': 'int64'}
# ------- #
# helpers #
# ------- #
def _hashtable_algo(f, dtype, return_dtype=None):
"""
f(HashTable, type_caster) -> result
"""
if is_float_dtype(dtype):
return f(htable.Float64HashTable, _ensure_float64)
elif is_integer_dtype(dtype):
return f(htable.Int64HashTable, _ensure_int64)
elif is_datetime64_dtype(dtype):
return_dtype = return_dtype or 'M8[ns]'
return f(htable.Int64HashTable, _ensure_int64).view(return_dtype)
elif is_timedelta64_dtype(dtype):
return_dtype = return_dtype or 'm8[ns]'
return f(htable.Int64HashTable, _ensure_int64).view(return_dtype)
else:
return f(htable.PyObjectHashTable, _ensure_object)
_hashtables = {
'float64': (htable.Float64HashTable, htable.Float64Vector),
'int64': (htable.Int64HashTable, htable.Int64Vector),
'generic': (htable.PyObjectHashTable, htable.ObjectVector)
}
def _get_data_algo(values, func_map):
if is_float_dtype(values):
f = func_map['float64']
values = _ensure_float64(values)
elif needs_i8_conversion(values):
f = func_map['int64']
values = values.view('i8')
elif is_integer_dtype(values):
f = func_map['int64']
values = _ensure_int64(values)
else:
f = func_map['generic']
values = _ensure_object(values)
return f, values
# ---- #
# take #
# ---- #
def _view_wrapper(f, arr_dtype=None, out_dtype=None, fill_wrap=None):
def wrapper(arr, indexer, out, fill_value=np.nan):
if arr_dtype is not None:
arr = arr.view(arr_dtype)
if out_dtype is not None:
out = out.view(out_dtype)
if fill_wrap is not None:
fill_value = fill_wrap(fill_value)
f(arr, indexer, out, fill_value=fill_value)
return wrapper
def _convert_wrapper(f, conv_dtype):
def wrapper(arr, indexer, out, fill_value=np.nan):
arr = arr.astype(conv_dtype)
f(arr, indexer, out, fill_value=fill_value)
return wrapper
def _take_2d_multi_generic(arr, indexer, out, fill_value, mask_info):
# this is not ideal, performance-wise, but it's better than raising
# an exception (best to optimize in Cython to avoid getting here)
row_idx, col_idx = indexer
if mask_info is not None:
(row_mask, col_mask), (row_needs, col_needs) = mask_info
else:
row_mask = row_idx == -1
col_mask = col_idx == -1
row_needs = row_mask.any()
col_needs = col_mask.any()
if fill_value is not None:
if row_needs:
out[row_mask, :] = fill_value
if col_needs:
out[:, col_mask] = fill_value
for i in range(len(row_idx)):
u_ = row_idx[i]
for j in range(len(col_idx)):
v = col_idx[j]
out[i, j] = arr[u_, v]
def _take_nd_generic(arr, indexer, out, axis, fill_value, mask_info):
if mask_info is not None:
mask, needs_masking = mask_info
else:
mask = indexer == -1
needs_masking = mask.any()
if arr.dtype != out.dtype:
arr = arr.astype(out.dtype)
if arr.shape[axis] > 0:
arr.take(_ensure_platform_int(indexer), axis=axis, out=out)
if needs_masking:
outindexer = [slice(None)] * arr.ndim
outindexer[axis] = mask
out[tuple(outindexer)] = fill_value
_take_1d_dict = {
('int8', 'int8'): algos.take_1d_int8_int8,
('int8', 'int32'): algos.take_1d_int8_int32,
('int8', 'int64'): algos.take_1d_int8_int64,
('int8', 'float64'): algos.take_1d_int8_float64,
('int16', 'int16'): algos.take_1d_int16_int16,
('int16', 'int32'): algos.take_1d_int16_int32,
('int16', 'int64'): algos.take_1d_int16_int64,
('int16', 'float64'): algos.take_1d_int16_float64,
('int32', 'int32'): algos.take_1d_int32_int32,
('int32', 'int64'): algos.take_1d_int32_int64,
('int32', 'float64'): algos.take_1d_int32_float64,
('int64', 'int64'): algos.take_1d_int64_int64,
('int64', 'float64'): algos.take_1d_int64_float64,
('float32', 'float32'): algos.take_1d_float32_float32,
('float32', 'float64'): algos.take_1d_float32_float64,
('float64', 'float64'): algos.take_1d_float64_float64,
('object', 'object'): algos.take_1d_object_object,
('bool', 'bool'): _view_wrapper(algos.take_1d_bool_bool, np.uint8,
np.uint8),
('bool', 'object'): _view_wrapper(algos.take_1d_bool_object, np.uint8,
None),
('datetime64[ns]', 'datetime64[ns]'): _view_wrapper(
algos.take_1d_int64_int64, np.int64, np.int64, np.int64)
}
_take_2d_axis0_dict = {
('int8', 'int8'): algos.take_2d_axis0_int8_int8,
('int8', 'int32'): algos.take_2d_axis0_int8_int32,
('int8', 'int64'): algos.take_2d_axis0_int8_int64,
('int8', 'float64'): algos.take_2d_axis0_int8_float64,
('int16', 'int16'): algos.take_2d_axis0_int16_int16,
('int16', 'int32'): algos.take_2d_axis0_int16_int32,
('int16', 'int64'): algos.take_2d_axis0_int16_int64,
('int16', 'float64'): algos.take_2d_axis0_int16_float64,
('int32', 'int32'): algos.take_2d_axis0_int32_int32,
('int32', 'int64'): algos.take_2d_axis0_int32_int64,
('int32', 'float64'): algos.take_2d_axis0_int32_float64,
('int64', 'int64'): algos.take_2d_axis0_int64_int64,
('int64', 'float64'): algos.take_2d_axis0_int64_float64,
('float32', 'float32'): algos.take_2d_axis0_float32_float32,
('float32', 'float64'): algos.take_2d_axis0_float32_float64,
('float64', 'float64'): algos.take_2d_axis0_float64_float64,
('object', 'object'): algos.take_2d_axis0_object_object,
('bool', 'bool'): _view_wrapper(algos.take_2d_axis0_bool_bool, np.uint8,
np.uint8),
('bool', 'object'): _view_wrapper(algos.take_2d_axis0_bool_object,
np.uint8, None),
('datetime64[ns]', 'datetime64[ns]'):
_view_wrapper(algos.take_2d_axis0_int64_int64, np.int64, np.int64,
fill_wrap=np.int64)
}
_take_2d_axis1_dict = {
('int8', 'int8'): algos.take_2d_axis1_int8_int8,
('int8', 'int32'): algos.take_2d_axis1_int8_int32,
('int8', 'int64'): algos.take_2d_axis1_int8_int64,
('int8', 'float64'): algos.take_2d_axis1_int8_float64,
('int16', 'int16'): algos.take_2d_axis1_int16_int16,
('int16', 'int32'): algos.take_2d_axis1_int16_int32,
('int16', 'int64'): algos.take_2d_axis1_int16_int64,
('int16', 'float64'): algos.take_2d_axis1_int16_float64,
('int32', 'int32'): algos.take_2d_axis1_int32_int32,
('int32', 'int64'): algos.take_2d_axis1_int32_int64,
('int32', 'float64'): algos.take_2d_axis1_int32_float64,
('int64', 'int64'): algos.take_2d_axis1_int64_int64,
('int64', 'float64'): algos.take_2d_axis1_int64_float64,
('float32', 'float32'): algos.take_2d_axis1_float32_float32,
('float32', 'float64'): algos.take_2d_axis1_float32_float64,
('float64', 'float64'): algos.take_2d_axis1_float64_float64,
('object', 'object'): algos.take_2d_axis1_object_object,
('bool', 'bool'): _view_wrapper(algos.take_2d_axis1_bool_bool, np.uint8,
np.uint8),
('bool', 'object'): _view_wrapper(algos.take_2d_axis1_bool_object,
np.uint8, None),
('datetime64[ns]', 'datetime64[ns]'):
_view_wrapper(algos.take_2d_axis1_int64_int64, np.int64, np.int64,
fill_wrap=np.int64)
}
_take_2d_multi_dict = {
('int8', 'int8'): algos.take_2d_multi_int8_int8,
('int8', 'int32'): algos.take_2d_multi_int8_int32,
('int8', 'int64'): algos.take_2d_multi_int8_int64,
('int8', 'float64'): algos.take_2d_multi_int8_float64,
('int16', 'int16'): algos.take_2d_multi_int16_int16,
('int16', 'int32'): algos.take_2d_multi_int16_int32,
('int16', 'int64'): algos.take_2d_multi_int16_int64,
('int16', 'float64'): algos.take_2d_multi_int16_float64,
('int32', 'int32'): algos.take_2d_multi_int32_int32,
('int32', 'int64'): algos.take_2d_multi_int32_int64,
('int32', 'float64'): algos.take_2d_multi_int32_float64,
('int64', 'int64'): algos.take_2d_multi_int64_int64,
('int64', 'float64'): algos.take_2d_multi_int64_float64,
('float32', 'float32'): algos.take_2d_multi_float32_float32,
('float32', 'float64'): algos.take_2d_multi_float32_float64,
('float64', 'float64'): algos.take_2d_multi_float64_float64,
('object', 'object'): algos.take_2d_multi_object_object,
('bool', 'bool'): _view_wrapper(algos.take_2d_multi_bool_bool, np.uint8,
np.uint8),
('bool', 'object'): _view_wrapper(algos.take_2d_multi_bool_object,
np.uint8, None),
('datetime64[ns]', 'datetime64[ns]'):
_view_wrapper(algos.take_2d_multi_int64_int64, np.int64, np.int64,
fill_wrap=np.int64)
}
def _get_take_nd_function(ndim, arr_dtype, out_dtype, axis=0, mask_info=None):
if ndim <= 2:
tup = (arr_dtype.name, out_dtype.name)
if ndim == 1:
func = _take_1d_dict.get(tup, None)
elif ndim == 2:
if axis == 0:
func = _take_2d_axis0_dict.get(tup, None)
else:
func = _take_2d_axis1_dict.get(tup, None)
if func is not None:
return func
tup = (out_dtype.name, out_dtype.name)
if ndim == 1:
func = _take_1d_dict.get(tup, None)
elif ndim == 2:
if axis == 0:
func = _take_2d_axis0_dict.get(tup, None)
else:
func = _take_2d_axis1_dict.get(tup, None)
if func is not None:
func = _convert_wrapper(func, out_dtype)
return func