@@ -36,7 +36,7 @@ of elements to display is five, but you may pass a custom number.
36
36
Attributes and underlying data
37
37
------------------------------
38
38
39
- pandas objects have a number of attributes enabling you to access the metadata
39
+ pandas objects have a number of attributes enabling you to access the metadata.
40
40
41
41
* **shape **: gives the axis dimensions of the object, consistent with ndarray
42
42
* Axis labels
@@ -59,7 +59,7 @@ NumPy's type system to add support for custom arrays
59
59
(see :ref: `basics.dtypes `).
60
60
61
61
To get the actual data inside a :class: `Index ` or :class: `Series `, use
62
- the ``.array `` property
62
+ the ``.array `` property.
63
63
64
64
.. ipython :: python
65
65
@@ -88,18 +88,18 @@ NumPy doesn't have a dtype to represent timezone-aware datetimes, so there
88
88
are two possibly useful representations:
89
89
90
90
1. An object-dtype :class: `numpy.ndarray ` with :class: `Timestamp ` objects, each
91
- with the correct ``tz ``
91
+ with the correct ``tz ``.
92
92
2. A ``datetime64[ns] `` -dtype :class: `numpy.ndarray `, where the values have
93
- been converted to UTC and the timezone discarded
93
+ been converted to UTC and the timezone discarded.
94
94
95
- Timezones may be preserved with ``dtype=object ``
95
+ Timezones may be preserved with ``dtype=object ``:
96
96
97
97
.. ipython :: python
98
98
99
99
ser = pd.Series(pd.date_range(" 2000" , periods = 2 , tz = " CET" ))
100
100
ser.to_numpy(dtype = object )
101
101
102
- Or thrown away with ``dtype='datetime64[ns]' ``
102
+ Or thrown away with ``dtype='datetime64[ns]' ``:
103
103
104
104
.. ipython :: python
105
105
0 commit comments